This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325091 #12 Mar 28 2019 09:23:15 %S A325091 1,2,3,4,7,9,10,12,16,19,34,39,49,52,53,55,63,66,70,75,81,84,88,90,94, %T A325091 100,108,112,120,129,131,144,160,172,192,205,246,254,256,259,311,328, %U A325091 333,339,341,361,370,377,391,434,444,452,465,545,558,592,598,609,614 %N A325091 Heinz numbers of integer partitions of powers of 2. %C A325091 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose sum of prime indices is a power of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A325091 1 is in the sequence because it has prime indices {} with sum 0 = 2^(-infinity). %e A325091 The sequence of terms together with their prime indices begins: %e A325091 1: {} %e A325091 2: {1} %e A325091 3: {2} %e A325091 4: {1,1} %e A325091 7: {4} %e A325091 9: {2,2} %e A325091 10: {1,3} %e A325091 12: {1,1,2} %e A325091 16: {1,1,1,1} %e A325091 19: {8} %e A325091 34: {1,7} %e A325091 39: {2,6} %e A325091 49: {4,4} %e A325091 52: {1,1,6} %e A325091 53: {16} %e A325091 55: {3,5} %e A325091 63: {2,2,4} %e A325091 66: {1,2,5} %e A325091 70: {1,3,4} %e A325091 75: {2,3,3} %e A325091 81: {2,2,2,2} %p A325091 q:= n-> (t-> t=2^ilog2(t))(add(numtheory[pi](i[1])*i[2], i=ifactors(n)[2])): %p A325091 select(q, [$1..1000])[]; # _Alois P. Heinz_, Mar 28 2019 %t A325091 Select[Range[100],#==1||IntegerQ[Log[2,Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]]&] %Y A325091 Cf. A000720, A001222, A018819, A033844, A056239, A102378, A112798, A131577, A318400, A325092, A325093. %K A325091 nonn %O A325091 1,2 %A A325091 _Gus Wiseman_, Mar 27 2019