This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325092 #8 Mar 28 2019 09:56:53 %S A325092 1,2,3,4,7,9,12,16,19,49,53,63,81,84,108,112,131,144,192,256,311,361, %T A325092 719,931,1197,1539,1596,1619,2052,2128,2401,2736,2809,3087,3648,3671, %U A325092 3969,4116,4864,5103,5292,5488,6561,6804,7056,8161,8748,9072,9408,11664,12096 %N A325092 Heinz numbers of integer partitions of powers of 2 into powers of 2. %C A325092 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose prime indices are powers of 2 and whose sum of prime indices is also a power of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A325092 1 is in the sequence because it has prime indices {} with sum 0 = 2^(-infinity). %e A325092 The sequence of terms together with their prime indices begins: %e A325092 1: {} %e A325092 2: {1} %e A325092 3: {2} %e A325092 4: {1,1} %e A325092 7: {4} %e A325092 9: {2,2} %e A325092 12: {1,1,2} %e A325092 16: {1,1,1,1} %e A325092 19: {8} %e A325092 49: {4,4} %e A325092 53: {16} %e A325092 63: {2,2,4} %e A325092 81: {2,2,2,2} %e A325092 84: {1,1,2,4} %e A325092 108: {1,1,2,2,2} %e A325092 112: {1,1,1,1,4} %e A325092 131: {32} %e A325092 144: {1,1,1,1,2,2} %e A325092 192: {1,1,1,1,1,1,2} %e A325092 256: {1,1,1,1,1,1,1,1} %e A325092 311: {64} %p A325092 q:= n-> andmap(t-> t=2^ilog2(t), (l-> [l[], add(i, i=l)])( %p A325092 map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))): %p A325092 select(q, [$1..15000])[]; # _Alois P. Heinz_, Mar 28 2019 %t A325092 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325092 pow2Q[n_]:=IntegerQ[Log[2,n]]; %t A325092 Select[Range[1000],#==1||pow2Q[Total[primeMS[#]]]&&And@@pow2Q/@primeMS[#]&] %Y A325092 Cf. A000720, A001222, A018819, A033844, A056239, A102378, A112798, A318400, A325091, A325093. %K A325092 nonn %O A325092 1,2 %A A325092 _Gus Wiseman_, Mar 27 2019