This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325093 #12 Mar 28 2019 13:05:01 %S A325093 1,2,3,6,7,14,19,21,38,42,53,57,106,114,131,133,159,262,266,311,318, %T A325093 371,393,399,622,719,742,786,798,917,933,1007,1113,1438,1619,1834, %U A325093 1866,2014,2157,2177,2226,2489,2751,3021,3238,3671,4314,4354,4857,4978,5033 %N A325093 Heinz numbers of integer partitions into distinct powers of 2. %C A325093 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices are powers of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A325093 Robert Israel, <a href="/A325093/b325093.txt">Table of n, a(n) for n = 1..10000</a> %e A325093 The sequence of terms together with their prime indices begins: %e A325093 1: {} %e A325093 2: {1} %e A325093 3: {2} %e A325093 6: {1,2} %e A325093 7: {4} %e A325093 14: {1,4} %e A325093 19: {8} %e A325093 21: {2,4} %e A325093 38: {1,8} %e A325093 42: {1,2,4} %e A325093 53: {16} %e A325093 57: {2,8} %e A325093 106: {1,16} %e A325093 114: {1,2,8} %e A325093 131: {32} %e A325093 133: {4,8} %e A325093 159: {2,16} %e A325093 262: {1,32} %e A325093 266: {1,4,8} %e A325093 311: {64} %p A325093 P:= [seq(ithprime(2^i),i=0..20)]:f:= proc(S,N) option remember; %p A325093 if S = [] or S[1]>N then return {1} fi; %p A325093 procname(S[2..-1],N) union %p A325093 map(t -> S[1]*t, procname(S[2..-1], floor(N/S[1])))end proc: %p A325093 sort(convert(f(P, P[20]),list)); # _Robert Israel_, Mar 28 2019 %t A325093 Select[Range[1000],SquareFreeQ[#]&&And@@IntegerQ/@Log[2,Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>PrimePi[p]]]&] %o A325093 (PARI) isp2(q) = (q == 1) || (q == 2) || (ispower(q,,&p) && (p==2)); %o A325093 isok(n) = {if (issquarefree(n), my(f=factor(n)[,1]); for (k=1, #f, if (! isp2(primepi(f[k])), return (0));); return (1);); return (0);} \\ _Michel Marcus_, Mar 28 2019 %Y A325093 Cf. A000720, A001222, A018819, A033844, A056239, A102378, A112798, A318400, A325091, A325092. %K A325093 nonn %O A325093 1,2 %A A325093 _Gus Wiseman_, Mar 27 2019