cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325093 Heinz numbers of integer partitions into distinct powers of 2.

This page as a plain text file.
%I A325093 #12 Mar 28 2019 13:05:01
%S A325093 1,2,3,6,7,14,19,21,38,42,53,57,106,114,131,133,159,262,266,311,318,
%T A325093 371,393,399,622,719,742,786,798,917,933,1007,1113,1438,1619,1834,
%U A325093 1866,2014,2157,2177,2226,2489,2751,3021,3238,3671,4314,4354,4857,4978,5033
%N A325093 Heinz numbers of integer partitions into distinct powers of 2.
%C A325093 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices are powers of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A325093 Robert Israel, <a href="/A325093/b325093.txt">Table of n, a(n) for n = 1..10000</a>
%e A325093 The sequence of terms together with their prime indices begins:
%e A325093     1: {}
%e A325093     2: {1}
%e A325093     3: {2}
%e A325093     6: {1,2}
%e A325093     7: {4}
%e A325093    14: {1,4}
%e A325093    19: {8}
%e A325093    21: {2,4}
%e A325093    38: {1,8}
%e A325093    42: {1,2,4}
%e A325093    53: {16}
%e A325093    57: {2,8}
%e A325093   106: {1,16}
%e A325093   114: {1,2,8}
%e A325093   131: {32}
%e A325093   133: {4,8}
%e A325093   159: {2,16}
%e A325093   262: {1,32}
%e A325093   266: {1,4,8}
%e A325093   311: {64}
%p A325093 P:= [seq(ithprime(2^i),i=0..20)]:f:= proc(S,N) option remember;
%p A325093   if S = [] or S[1]>N then return {1} fi;
%p A325093   procname(S[2..-1],N) union
%p A325093     map(t -> S[1]*t, procname(S[2..-1], floor(N/S[1])))end proc:
%p A325093 sort(convert(f(P, P[20]),list));  # _Robert Israel_, Mar 28 2019
%t A325093 Select[Range[1000],SquareFreeQ[#]&&And@@IntegerQ/@Log[2,Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>PrimePi[p]]]&]
%o A325093 (PARI) isp2(q) = (q == 1) || (q == 2) || (ispower(q,,&p) && (p==2));
%o A325093 isok(n) = {if (issquarefree(n), my(f=factor(n)[,1]); for (k=1, #f, if (! isp2(primepi(f[k])), return (0));); return (1);); return (0);} \\ _Michel Marcus_, Mar 28 2019
%Y A325093 Cf. A000720, A001222, A018819, A033844, A056239, A102378, A112798, A318400, A325091, A325092.
%K A325093 nonn
%O A325093 1,2
%A A325093 _Gus Wiseman_, Mar 27 2019