This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325097 #7 Jul 27 2019 14:57:51 %S A325097 1,2,3,4,5,6,7,8,9,11,12,13,14,16,17,18,19,21,23,24,25,26,27,28,29,31, %T A325097 32,33,35,36,37,38,41,42,43,47,48,49,52,53,54,56,57,58,59,61,63,64,67, %U A325097 69,71,72,73,74,76,79,81,83,84,86,89,95,96,97,98,99,101 %N A325097 Heinz numbers of integer partitions whose distinct parts have no binary carries. %C A325097 A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. %C A325097 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose distinct prime indices have no binary carries. %e A325097 Most small numbers are in the sequence, however the sequence of non-terms together with their prime indices begins: %e A325097 10: {1,3} %e A325097 15: {2,3} %e A325097 20: {1,1,3} %e A325097 22: {1,5} %e A325097 30: {1,2,3} %e A325097 34: {1,7} %e A325097 39: {2,6} %e A325097 40: {1,1,1,3} %e A325097 44: {1,1,5} %e A325097 45: {2,2,3} %e A325097 46: {1,9} %e A325097 50: {1,3,3} %e A325097 51: {2,7} %e A325097 55: {3,5} %e A325097 60: {1,1,2,3} %e A325097 62: {1,11} %e A325097 65: {3,6} %e A325097 66: {1,2,5} %e A325097 68: {1,1,7} %e A325097 70: {1,3,4} %t A325097 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325097 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A325097 Select[Range[100],stableQ[PrimePi/@First/@FactorInteger[#],Intersection[binpos[#1],binpos[#2]]!={}&]&] %Y A325097 Cf. A000110, A000720, A001222, A050315, A056239, A080572, A112798, A247935. %Y A325097 Cf. A325094, A325095, A325096, A325097, A325098, A325100, A325102, A325103. %K A325097 nonn %O A325097 1,2 %A A325097 _Gus Wiseman_, Mar 27 2019