This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325098 #20 May 11 2021 06:15:38 %S A325098 1,1,2,2,4,4,7,7,13,15,23,27,42,50,72,88,125,153,211,258,349,430,569, %T A325098 698,914,1119,1444,1765,2252,2745,3470,4214,5276,6387,7934,9568,11800, %U A325098 14181,17379,20818,25351,30264,36668,43633,52589,62394,74872,88576,105818 %N A325098 Number of binary carry-connected integer partitions of n. %C A325098 A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. An integer partition is binary carry-connected if the graph whose vertices are the parts and whose edges are binary carries is connected. %H A325098 Alois P. Heinz, <a href="/A325098/b325098.txt">Table of n, a(n) for n = 0..500</a> %e A325098 The a(1) = 1 through a(8) = 13 partitions: %e A325098 (1) (2) (3) (4) (5) (6) (7) (8) %e A325098 (11) (111) (22) (32) (33) (322) (44) %e A325098 (31) (311) (51) (331) (53) %e A325098 (1111) (11111) (222) (511) (62) %e A325098 (321) (3211) (71) %e A325098 (3111) (31111) (332) %e A325098 (111111) (1111111) (2222) %e A325098 (3221) %e A325098 (3311) %e A325098 (5111) %e A325098 (32111) %e A325098 (311111) %e A325098 (11111111) %p A325098 h:= proc(n, s) local i, m; m:= n; %p A325098 for i in s do m:= Bits[Or](m, i) od; {m} %p A325098 end: %p A325098 g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union %p A325098 h(n, w)))(select(x-> Bits[And](n, x)>0, s)): %p A325098 b:= proc(n, i, s) option remember; `if`(n=0, `if`(nops(s)>1, 0, 1), %p A325098 `if`(i<1, 0, b(n, i-1, s)+ b(n-i, min(i, n-i), g(i, s)))) %p A325098 end: %p A325098 a:= n-> b(n$2, {}): %p A325098 seq(a(n), n=0..50); # _Alois P. Heinz_, Mar 29 2019 %t A325098 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325098 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A325098 Table[Length[Select[IntegerPartitions[n],Length[csm[binpos/@#]]<=1&]],{n,0,20}] %t A325098 (* Second program: *) %t A325098 h[n_, s_] := Module[{i, m = n}, Do[m = BitOr[m, i], {i, s}]; {m}]; %t A325098 g[n_, s_] := Function[w, If[w == {}, s ~Union~ {n}, (s ~Complement~ w) ~Union~ %t A325098 h[n, w]]][Select[s, BitAnd[n, #] > 0&]]; %t A325098 b[n_, i_, s_] := b[n, i, s] = If[n == 0, If[Length[s] > 1, 0, 1], %t A325098 If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[i, n - i], g[i, s]]]]; %t A325098 a[n_] := b[n, n, {}]; %t A325098 a /@ Range[0, 50] (* _Jean-François Alcover_, May 11 2021, after _Alois P. Heinz_ *) %Y A325098 Cf. A050315, A080572, A247935, A267610, A267700. %Y A325098 Cf. A325096, A325099, A325104, A325106, A325108, A325110, A325118, A325119. %K A325098 nonn %O A325098 0,3 %A A325098 _Gus Wiseman_, Mar 28 2019 %E A325098 a(21)-a(48) from _Alois P. Heinz_, Mar 29 2019