cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325099 Number of binary carry-connected strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 1, 4, 5, 8, 6, 11, 11, 15, 13, 18, 20, 30, 29, 43, 49, 68, 66, 84, 94, 125, 131, 165, 184, 237, 251, 291, 315, 383, 408, 486, 536, 663, 714, 832, 912, 1104, 1195, 1405, 1554, 1877, 2046, 2348, 2559, 2998, 3256, 3730, 4084, 4793, 5230, 5938
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. An integer partition is binary carry-connected if the graph whose vertices are the parts and whose edges are binary carries is connected.

Examples

			The a(1) = 1 through a(11) = 6 strict partitions (A = 10, B = 11):
  (1)  (2)  (3)  (4)   (5)   (6)    (7)  (8)   (9)    (A)    (B)
                 (31)  (32)  (51)        (53)  (54)   (64)   (65)
                             (321)       (62)  (63)   (73)   (74)
                                         (71)  (72)   (91)   (632)
                                               (531)  (532)  (731)
                                                      (541)  (5321)
                                                      (631)
                                                      (721)
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[csm[binpos/@#]]<=1&]],{n,0,30}]