cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325100 Heinz numbers of strict integer partitions with no binary carries.

This page as a plain text file.
%I A325100 #6 Jul 27 2019 14:57:51
%S A325100 1,2,3,5,6,7,11,13,14,17,19,21,23,26,29,31,33,35,37,38,41,42,43,47,53,
%T A325100 57,58,59,61,67,69,71,73,74,79,83,86,89,95,97,101,103,106,107,109,111,
%U A325100 113,114,122,123,127,131,133,137,139,142,149,151,157,158,159
%N A325100 Heinz numbers of strict integer partitions with no binary carries.
%C A325100 A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion.
%C A325100 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices have no carries. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A325100 The sequence of terms together with their prime indices begins:
%e A325100    1: {}
%e A325100    2: {1}
%e A325100    3: {2}
%e A325100    5: {3}
%e A325100    6: {1,2}
%e A325100    7: {4}
%e A325100   11: {5}
%e A325100   13: {6}
%e A325100   14: {1,4}
%e A325100   17: {7}
%e A325100   19: {8}
%e A325100   21: {2,4}
%e A325100   23: {9}
%e A325100   26: {1,6}
%e A325100   29: {10}
%e A325100   31: {11}
%e A325100   33: {2,5}
%e A325100   35: {3,4}
%e A325100   37: {12}
%e A325100   38: {1,8}
%e A325100   41: {13}
%e A325100   42: {1,2,4}
%t A325100 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A325100 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A325100 Select[Range[100],SquareFreeQ[#]&&stableQ[PrimePi/@First/@FactorInteger[#],Intersection[binpos[#1],binpos[#2]]!={}&]&]
%Y A325100 Cf. A050315, A056239, A080572, A112798, A247935, A267610.
%Y A325100 Cf. A325095, A325096, A325097, A325100, A325101, A325103, A325110, A325119.
%K A325100 nonn
%O A325100 1,2
%A A325100 _Gus Wiseman_, Mar 28 2019