This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325100 #6 Jul 27 2019 14:57:51 %S A325100 1,2,3,5,6,7,11,13,14,17,19,21,23,26,29,31,33,35,37,38,41,42,43,47,53, %T A325100 57,58,59,61,67,69,71,73,74,79,83,86,89,95,97,101,103,106,107,109,111, %U A325100 113,114,122,123,127,131,133,137,139,142,149,151,157,158,159 %N A325100 Heinz numbers of strict integer partitions with no binary carries. %C A325100 A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. %C A325100 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices have no carries. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A325100 The sequence of terms together with their prime indices begins: %e A325100 1: {} %e A325100 2: {1} %e A325100 3: {2} %e A325100 5: {3} %e A325100 6: {1,2} %e A325100 7: {4} %e A325100 11: {5} %e A325100 13: {6} %e A325100 14: {1,4} %e A325100 17: {7} %e A325100 19: {8} %e A325100 21: {2,4} %e A325100 23: {9} %e A325100 26: {1,6} %e A325100 29: {10} %e A325100 31: {11} %e A325100 33: {2,5} %e A325100 35: {3,4} %e A325100 37: {12} %e A325100 38: {1,8} %e A325100 41: {13} %e A325100 42: {1,2,4} %t A325100 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325100 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A325100 Select[Range[100],SquareFreeQ[#]&&stableQ[PrimePi/@First/@FactorInteger[#],Intersection[binpos[#1],binpos[#2]]!={}&]&] %Y A325100 Cf. A050315, A056239, A080572, A112798, A247935, A267610. %Y A325100 Cf. A325095, A325096, A325097, A325100, A325101, A325103, A325110, A325119. %K A325100 nonn %O A325100 1,2 %A A325100 _Gus Wiseman_, Mar 28 2019