cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325101 Number of divisible binary-containment pairs of positive integers up to n.

This page as a plain text file.
%I A325101 #7 Jul 27 2019 14:57:51
%S A325101 0,1,2,4,5,7,9,11,12,14,16,18,20,22,24,28,29,31,33,35,37,39,41,43,45,
%T A325101 47,49,53,55,57,61,63,64,66,68,70,72,74,76,79,81,83,85,87,89,93,95,97,
%U A325101 99,101,103,107,109,111,115,118,120,122,124,126,130,132,134
%N A325101 Number of divisible binary-containment pairs of positive integers up to n.
%C A325101 A pair of positive integers is divisible if the first divides the second, and is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of those in the second.
%F A325101 a(n) = A325106(n) + n.
%e A325101 The a(1) = 1 through a(8) = 12 pairs:
%e A325101   (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)
%e A325101          (2,2)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)
%e A325101                 (2,2)  (2,2)  (1,5)  (1,5)  (1,5)  (1,5)
%e A325101                 (3,3)  (3,3)  (2,2)  (2,2)  (1,7)  (1,7)
%e A325101                        (4,4)  (3,3)  (2,6)  (2,2)  (2,2)
%e A325101                               (4,4)  (3,3)  (2,6)  (2,6)
%e A325101                               (5,5)  (4,4)  (3,3)  (3,3)
%e A325101                                      (5,5)  (4,4)  (4,4)
%e A325101                                      (6,6)  (5,5)  (5,5)
%e A325101                                             (6,6)  (6,6)
%e A325101                                             (7,7)  (7,7)
%e A325101                                                    (8,8)
%t A325101 Table[Length[Select[Tuples[Range[n],2],Divisible[#[[2]],#[[1]]]&&SubsetQ[Position[Reverse[IntegerDigits[#[[2]],2]],1],Position[Reverse[IntegerDigits[#1[[1]],2]],1]]&]],{n,0,30}]
%Y A325101 Cf. A000005, A006218, A080572, A267610, A267700.
%Y A325101 Cf. A325094, A325102, A325106, A325107, A325108, A325109, A325110.
%K A325101 nonn
%O A325101 0,3
%A A325101 _Gus Wiseman_, Mar 28 2019