This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325105 #13 Jul 27 2019 14:57:51 %S A325105 1,2,3,7,8,20,48,112,113,325,777,1737,3709,7741,15869,32253,32254, %T A325105 96538,225798,485702,1006338,2049602,4137346,8315266,16697102, %U A325105 33465934,67007886,134100366,268301518,536720590,1073575118,2147316942,2147316943,6441886323 %N A325105 Number of binary carry-connected subsets of {1...n}. %C A325105 A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. A subset is binary carry-connected if the graph whose vertices are the elements and whose edges are binary carries is connected. %H A325105 Alois P. Heinz, <a href="/A325105/b325105.txt">Table of n, a(n) for n = 0..1023</a> %F A325105 a(n) = A306297(n,0) + A306297(n,1). - _Alois P. Heinz_, Mar 31 2019 %e A325105 The a(0) = 1 through a(4) = 8 subsets: %e A325105 {} {} {} {} {} %e A325105 {1} {1} {1} {1} %e A325105 {2} {2} {2} %e A325105 {3} {3} %e A325105 {1,3} {4} %e A325105 {2,3} {1,3} %e A325105 {1,2,3} {2,3} %e A325105 {1,2,3} %p A325105 h:= proc(n, s) local i, m; m:= n; %p A325105 for i in s do m:= Bits[Or](m, i) od; {m} %p A325105 end: %p A325105 g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union %p A325105 h(n, w)))(select(x-> Bits[And](n, x)>0, s)): %p A325105 b:= proc(n, s) option remember; `if`(n=0, %p A325105 `if`(nops(s)>1, 0, 1), b(n-1, s)+b(n-1, g(n, s))) %p A325105 end: %p A325105 a:= n-> b(n, {}): %p A325105 seq(a(n), n=0..35); # _Alois P. Heinz_, Mar 31 2019 %t A325105 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325105 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A325105 Table[Length[Select[Subsets[Range[n]],Length[csm[binpos/@#]]<=1&]],{n,0,10}] %Y A325105 Cf. A019565, A080572, A247935, A304714, A304716, A305078. %Y A325105 Cf. A325095, A325098, A325099, A325104, A325107, A325118, A325119. %Y A325105 Partial sums of A306299. %K A325105 nonn %O A325105 0,2 %A A325105 _Gus Wiseman_, Mar 28 2019 %E A325105 a(16)-a(33) from _Alois P. Heinz_, Mar 31 2019