cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325106 Number of divisible binary-containment pairs of positive integers up to n.

This page as a plain text file.
%I A325106 #8 Jul 27 2019 14:57:51
%S A325106 0,0,0,1,1,2,3,4,4,5,6,7,8,9,10,13,13,14,15,16,17,18,19,20,21,22,23,
%T A325106 26,27,28,31,32,32,33,34,35,36,37,38,40,41,42,43,44,45,48,49,50,51,52,
%U A325106 53,56,57,58,61,63,64,65,66,67,70,71,72,77,77,78,79,80,81
%N A325106 Number of divisible binary-containment pairs of positive integers up to n.
%C A325106 A pair of positive integers is divisible if the first divides the second, and is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second.
%F A325106 a(n) = A325101(n) - n.
%e A325106 The a(3) = 1 through a(12) = 8 pairs:
%e A325106   {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}   {1,3}   {1,3}
%e A325106                 {1,5}  {1,5}  {1,5}  {1,5}  {1,5}  {1,5}   {1,5}   {1,5}
%e A325106                        {2,6}  {1,7}  {1,7}  {1,7}  {1,7}   {1,7}   {1,7}
%e A325106                               {2,6}  {2,6}  {1,9}  {1,9}   {1,9}   {1,9}
%e A325106                                             {2,6}  {2,6}   {2,6}   {2,6}
%e A325106                                                    {2,10}  {1,11}  {1,11}
%e A325106                                                            {2,10}  {2,10}
%e A325106                                                                    {4,12}
%t A325106 Table[Length[Select[Subsets[Range[n],{2}],Divisible[#[[2]],#[[1]]]&&SubsetQ[Position[Reverse[IntegerDigits[#[[2]],2]],1],Position[Reverse[IntegerDigits[#1[[1]],2]],1]]&]],{n,0,30}]
%Y A325106 Cf. A000005, A006218, A080572, A267610, A267700.
%Y A325106 Cf. A325094, A325101, A325102, A325107, A325108, A325109, A325110.
%K A325106 nonn
%O A325106 0,6
%A A325106 _Gus Wiseman_, Mar 28 2019