This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325107 #28 Dec 12 2020 04:30:36 %S A325107 1,2,4,5,10,13,18,19,38,52,77,83,133,147,166,167,334,482,764,848,1465, %T A325107 1680,1987,2007,3699,4413,5488,5572,7264,7412,7579,7580,15160,22573, %U A325107 37251,42824,77387,92863,116453,118461,227502,286775,382573,392246,555661,574113 %N A325107 Number of subsets of {1...n} with no binary containments. %C A325107 A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. %H A325107 Fausto A. C. Cariboni, <a href="/A325107/b325107.txt">Table of n, a(n) for n = 0..129</a>, (terms up to a(71) from Alois P. Heinz) %F A325107 a(2^n - 1) = A014466(n). %e A325107 The a(0) = 1 through a(6) = 18 subsets: %e A325107 {} {} {} {} {} {} {} %e A325107 {1} {1} {1} {1} {1} {1} %e A325107 {2} {2} {2} {2} {2} %e A325107 {1,2} {3} {3} {3} {3} %e A325107 {1,2} {4} {4} {4} %e A325107 {1,2} {5} {5} %e A325107 {1,4} {1,2} {6} %e A325107 {2,4} {1,4} {1,2} %e A325107 {3,4} {2,4} {1,4} %e A325107 {1,2,4} {2,5} {1,6} %e A325107 {3,4} {2,4} %e A325107 {3,5} {2,5} %e A325107 {1,2,4} {3,4} %e A325107 {3,5} %e A325107 {3,6} %e A325107 {5,6} %e A325107 {1,2,4} %e A325107 {3,5,6} %p A325107 c:= proc() option remember; local i, x, y; %p A325107 x, y:= map(n-> Bits[Split](n), [args])[]; %p A325107 for i to nops(x) do %p A325107 if x[i]=1 and y[i]=0 then return false fi %p A325107 od; true %p A325107 end: %p A325107 b:= proc(n, s) option remember; `if`(n=0, 1, b(n-1, s)+ %p A325107 `if`(ormap(i-> c(n, i), s), 0, b(n-1, s union {n}))) %p A325107 end: %p A325107 a:= n-> b(n, {}): %p A325107 seq(a(n), n=0..34); # _Alois P. Heinz_, Mar 28 2019 %t A325107 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325107 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A325107 Table[Length[Select[Subsets[Range[n]],stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,13}] %Y A325107 Cf. A006126, A014466, A019565, A267610. %Y A325107 Cf. A325095, A325096, A325101, A325105, A325106, A325108, A325109, A325110. %K A325107 nonn %O A325107 0,2 %A A325107 _Gus Wiseman_, Mar 28 2019 %E A325107 a(16)-a(45) from _Alois P. Heinz_, Mar 28 2019