This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325108 #8 Jul 27 2019 14:57:51 %S A325108 1,1,1,2,2,4,5,6,6,11,13,16,17,22,27,28 %N A325108 Number of maximal subsets of {1...n} with no binary containments. %C A325108 A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. %e A325108 The a(0) = 1 through a(7) = 6 maximal subsets: %e A325108 {} {1} {1,2} {3} {3,4} {2,5} {1,6} {7} %e A325108 {1,2} {1,2,4} {3,4} {2,5} {1,6} %e A325108 {3,5} {3,4} {2,5} %e A325108 {1,2,4} {1,2,4} {3,4} %e A325108 {3,5,6} {1,2,4} %e A325108 {3,5,6} %t A325108 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325108 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A325108 maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]]; %t A325108 Table[Length[maxim[Select[Subsets[Range[n]],stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]]],{n,0,10}] %Y A325108 Cf. A006126, A014466, A019565, A267610. %Y A325108 Cf. A325095, A325096, A325101, A325106, A325107, A325109, A325110. %K A325108 nonn,more %O A325108 0,4 %A A325108 _Gus Wiseman_, Mar 28 2019