This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325109 #19 Jun 03 2021 09:31:33 %S A325109 1,1,2,3,4,5,8,10,12,15,18,23,28,32,41,52,57,66,76,90,99,117,131,157, %T A325109 172,194,216,255,276,313,358,410,447,511,546,630,677,750,818,945,990, %U A325109 1108,1200,1338,1429,1606,1713,1928,2062,2263,2412,2725,2847,3142,3389 %N A325109 Number of integer partitions of n whose distinct parts have no binary containments. %C A325109 A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. %H A325109 Fausto A. C. Cariboni, <a href="/A325109/b325109.txt">Table of n, a(n) for n = 0..400</a>, (terms up to a(200) from Alois P. Heinz) %e A325109 The a(1) = 1 through a(8) = 12 partitions: %e A325109 (1) (2) (3) (4) (5) (6) (7) (8) %e A325109 (11) (21) (22) (41) (33) (43) (44) %e A325109 (111) (211) (221) (42) (52) (53) %e A325109 (1111) (2111) (222) (61) (422) %e A325109 (11111) (411) (421) (611) %e A325109 (2211) (2221) (2222) %e A325109 (21111) (4111) (4211) %e A325109 (111111) (22111) (22211) %e A325109 (211111) (41111) %e A325109 (1111111) (221111) %e A325109 (2111111) %e A325109 (11111111) %p A325109 c:= proc() option remember; local i, x, y; %p A325109 x, y:= map(n-> Bits[Split](n), [args])[]; %p A325109 for i to nops(x) do %p A325109 if x[i]=1 and y[i]=0 then return false fi %p A325109 od; true %p A325109 end: %p A325109 b:= proc(n, i, s) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A325109 b(n, i-1, s)+`if`(ormap(j-> c(i, j), s), 0, add( %p A325109 b(n-i*j, i-1, s union {i}), j=1..n/i)))) %p A325109 end: %p A325109 a:= n-> b(n$2, {}): %p A325109 seq(a(n), n=0..55); # _Alois P. Heinz_, Mar 29 2019 %t A325109 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325109 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A325109 Table[Length[Select[IntegerPartitions[n],stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,15}] %t A325109 (* Second program: *) %t A325109 c[args_List] := c[args] = Module[{i, x, y}, {x, y} = Reverse@IntegerDigits[#, 2]& /@ args; For[i = 1, i <= Length[x], i++, If[x[[i]] == 1 && y[[i]] == 0, Return[False]]]; True]; %t A325109 b[n_, i_, s_List] := b[n, i, s] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, s] + If[AnyTrue[s, c[{i, #}]&], 0, Sum[b[n - i*j, i-1, s ~Union~ {i}], {j, 1, n/i}]]]]; %t A325109 a[n_] := b[n, n, {}]; %t A325109 a /@ Range[0, 55] (* _Jean-François Alcover_, Jun 03 2021, after _Alois P. Heinz_ *) %Y A325109 Cf. A019565, A247935, A267610, A267700. %Y A325109 Cf. A325098, A325101, A325106, A325107, A325108, A325110. %K A325109 nonn %O A325109 0,3 %A A325109 _Gus Wiseman_, Mar 28 2019 %E A325109 a(31)-a(54) from _Alois P. Heinz_, Mar 29 2019