This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325110 #9 Dec 12 2020 19:05:51 %S A325110 1,1,1,2,1,2,2,5,2,3,2,6,3,6,7,15,8,10,6,13,6,10,12,23,13,16,16,26,21, %T A325110 30,37,60,43,52,42,60,42,50,54,81,59,60,66,80,74,86,108,145,119,125, %U A325110 126,144,134,140,170,208,189,193,221,248,253,292,323,435,392 %N A325110 Number of strict integer partitions of n with no binary containments. %C A325110 A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. %H A325110 Fausto A. C. Cariboni, <a href="/A325110/b325110.txt">Table of n, a(n) for n = 0..600</a> %e A325110 The a(1) = 1 through a(12) = 3 partitions (A = 10, B = 11, C = 12): %e A325110 (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) %e A325110 (21) (41) (42) (43) (53) (63) (82) (65) (84) %e A325110 (52) (81) (83) (93) %e A325110 (61) (92) %e A325110 (421) (A1) %e A325110 (821) %t A325110 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325110 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A325110 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,30}] %Y A325110 Cf. A019565, A050315, A267610, A267700. %Y A325110 Cf. A325101, A325106, A325107, A325108, A325109, A325119. %K A325110 nonn %O A325110 0,4 %A A325110 _Gus Wiseman_, Mar 28 2019