This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325112 #42 Sep 17 2024 12:34:04 %S A325112 1,2,4,5,7,8,10,11,14,17,20,22,25,28,40,41,44,47,50,52,55,58,70,71,74, %T A325112 77,80,82,85,88,100,101,104,107,110,140,170,200,202,205,208,220,250, %U A325112 280,400,401,404,407,410,440,470,500,502,505,508,520,550,580,700 %N A325112 Integers k such that no nonzero subsequence of the decimal representation of k is divisible by 3. %C A325112 Integers whose decimal representation contains either just one nonzero digit, which is congruent to 1 or 2 (mod 3), or just two nonzero digits, which are either both == 1 (mod 3) or both == 2 (mod 3). - _Robert Israel_, Dec 25 2019 %H A325112 Robert Israel, <a href="/A325112/b325112.txt">Table of n, a(n) for n = 1..10000</a> %H A325112 Chai Wah Wu, <a href="https://arxiv.org/abs/2409.05844">Algorithms for complementary sequences</a>, arXiv:2409.05844 [math.NT], 2024. %e A325112 From _David A. Corneth_, Sep 09 2024: (Start) 404 is in the sequence as its nonzero digits are (4,4). The nonzero subsequences of digits are (), (4), (4,4) with respective sums 0, 4, 8. None of these subsequences have a sum that is divisible by 3. %e A325112 4160 is not in the sequence as one of its nonzero subsequences is (6) which sums to 6. As 6 is divisible by 3, 4160 is not in the sequence. (End) %p A325112 F:= proc(d) local i,j,k, g; %p A325112 g:= [1,2,4,5,7,8]; %p A325112 op(sort([seq(i*10^(d-1),i=g), seq(seq(seq(i*10^(d-1) + j*10^k, j = select(t -> (t-i) mod 3 = 0, g)),k=0..d-2),i=g)])); %p A325112 end proc: %p A325112 seq(F(d),d=1..4); # _Robert Israel_, Dec 25 2019 %t A325112 With[{k = 3}, Select[Range@ 700, NoneTrue[DeleteCases[FromDigits /@ Rest@ Subsequences[IntegerDigits@ #], 0], Mod[#, k] == 0 &] &]] (* _Michael De Vlieger_, Mar 31 2019 *) %o A325112 (Python) %o A325112 from itertools import combinations %o A325112 def A325112(n): %o A325112 def bisection(f,kmin=0,kmax=1): %o A325112 while f(kmax) > kmax: kmax <<= 1 %o A325112 while kmax-kmin > 1: %o A325112 kmid = kmax+kmin>>1 %o A325112 if f(kmid) <= kmid: %o A325112 kmax = kmid %o A325112 else: %o A325112 kmin = kmid %o A325112 return kmax %o A325112 def f(x): %o A325112 c, l = 0, len(str(x)) %o A325112 for i in range(l): %o A325112 k = 10**i %o A325112 for j in (1,2,4,5,7,8): %o A325112 if j*k<=x: %o A325112 c += 1 %o A325112 for a in combinations((10**i for i in range(l)),2): %o A325112 for b in ((1, 1), (1, 4), (1, 7), (2, 2), (2, 5), (2, 8), (4, 1), (4, 4), (4, 7), (5, 2), (5, 5), (5, 8), (7, 1), (7, 4), (7, 7), (8, 2), (8, 5), (8, 8)): %o A325112 if a[0]*b[0]+a[1]*b[1] <= x: %o A325112 c += 1 %o A325112 return n+x-c %o A325112 return bisection(f,n,n) # _Chai Wah Wu_, Sep 10 2024 %Y A325112 Cf. A014261 (for 2), A325113 (for 4), A261189 (for 5), A325114 (for 7). %Y A325112 A261188 is a subsequence. %Y A325112 A376045 is the complement. %K A325112 nonn,base %O A325112 1,2 %A A325112 _Jonathan Kal-El Peréz_, Mar 27 2019