This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325119 #5 Jul 27 2019 14:57:51 %S A325119 1,2,3,5,7,10,11,13,15,17,19,22,23,29,30,31,34,37,39,41,43,46,47,51, %T A325119 53,55,59,61,62,65,67,71,73,77,79,82,83,85,87,89,91,93,94,97,101,102, %U A325119 103,107,109,110,113,115,118,119,127,129,130,131,134,137,139,141 %N A325119 Heinz numbers of binary carry-connected strict integer partitions. %C A325119 A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. An integer partition is binary carry-connected if the graph whose vertices are the parts and whose edges are binary carries is connected. %C A325119 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices are binary carry-connected. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A325119 The sequence of terms together with their prime indices begins: %e A325119 1: {} %e A325119 2: {1} %e A325119 3: {2} %e A325119 5: {3} %e A325119 7: {4} %e A325119 10: {1,3} %e A325119 11: {5} %e A325119 13: {6} %e A325119 15: {2,3} %e A325119 17: {7} %e A325119 19: {8} %e A325119 22: {1,5} %e A325119 23: {9} %e A325119 29: {10} %e A325119 30: {1,2,3} %e A325119 31: {11} %e A325119 34: {1,7} %e A325119 37: {12} %e A325119 39: {2,6} %e A325119 41: {13} %e A325119 43: {14} %t A325119 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A325119 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A325119 Select[Range[100],SquareFreeQ[#]&&Length[csm[binpos/@PrimePi/@First/@FactorInteger[#]]]<=1&] %Y A325119 Cf. A019565, A048143, A056239, A112798, A304714, A304716, A305078. %Y A325119 Cf. A325098, A325099, A325100, A325105, A325110, A325118. %K A325119 nonn %O A325119 1,2 %A A325119 _Gus Wiseman_, Mar 28 2019