This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325124 #7 Jul 27 2019 14:57:51 %S A325124 0,1,2,4,5,7,10,12,13,16,18,20,23,25,28,32,33,35,39,41,44,48,51,53,56, %T A325124 59,62,66,70,72,79,81,82,86,88,92,96,98,101,105,108,110,116,118,122, %U A325124 128,131,133,136,139,143,147,151,153,159,163,167,171,174,176,185 %N A325124 Number of divisible pairs of positive integers up to n with at least one binary carry. %C A325124 Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap. %F A325124 a(n) = A307230(n) + n. %e A325124 The a(1) = 1 through a(8) = 13 pairs: %e A325124 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) %e A325124 (2,2) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) %e A325124 (2,2) (2,2) (1,5) (1,5) (1,5) (1,5) %e A325124 (3,3) (3,3) (2,2) (2,2) (1,7) (1,7) %e A325124 (4,4) (3,3) (2,6) (2,2) (2,2) %e A325124 (4,4) (3,3) (2,6) (2,6) %e A325124 (5,5) (3,6) (3,3) (3,3) %e A325124 (4,4) (3,6) (3,6) %e A325124 (5,5) (4,4) (4,4) %e A325124 (6,6) (5,5) (5,5) %e A325124 (6,6) (6,6) %e A325124 (7,7) (7,7) %e A325124 (8,8) %t A325124 Table[Length[Select[Tuples[Range[n],2],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}] %Y A325124 Cf. A006218, A019565, A050315, A070939, A080572, A247935, A267610, A307230. %Y A325124 Cf. A325095, A325096, A325101, A325103, A325104, A325105, A325106, A325123. %K A325124 nonn %O A325124 0,3 %A A325124 _Gus Wiseman_, Mar 29 2019