A325127 Numbers in whose prime factorization the exponent of prime(k) is greater than k for all prime indices k.
1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 625, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2500, 2592, 2916, 3125, 3456, 3888, 4096, 5000, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10000, 10368, 11664, 12500, 13824, 15552
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 4: {1,1} 8: {1,1,1} 16: {1,1,1,1} 27: {2,2,2} 32: {1,1,1,1,1} 64: {1,1,1,1,1,1} 81: {2,2,2,2} 108: {1,1,2,2,2} 128: {1,1,1,1,1,1,1} 216: {1,1,1,2,2,2} 243: {2,2,2,2,2} 256: {1,1,1,1,1,1,1,1} 324: {1,1,2,2,2,2} 432: {1,1,1,1,2,2,2} 512: {1,1,1,1,1,1,1,1,1} 625: {3,3,3,3} 648: {1,1,1,2,2,2,2} 729: {2,2,2,2,2,2} 864: {1,1,1,1,1,2,2,2} 972: {1,1,2,2,2,2,2}
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2847 (terms up to 10^12)
Crossrefs
Programs
-
Mathematica
Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>PrimePi[p]]&] With[{k = 4}, m = Prime[k]^(k + 1); s = {}; Do[p = Prime[i]; AppendTo[s, Join[{1}, p^Range[i + 1, Floor[Log[p, m]]]]], {i, 1, k}]; Union @ Select[Times @@@ Tuples[s], # <= m &]] (* Amiram Eldar, Oct 24 2020 *)
Formula
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^k * (prime(k)-1)) = 1.58661114052385082598.... - Amiram Eldar, Oct 24 2020
Comments