This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325128 #10 Feb 02 2021 04:35:45 %S A325128 1,3,5,7,11,13,15,17,19,21,23,25,29,31,33,35,37,39,41,43,47,49,51,53, %T A325128 55,57,59,61,65,67,69,71,73,75,77,79,83,85,87,89,91,93,95,97,101,103, %U A325128 105,107,109,111,113,115,119,121,123,127,129,131,133,137,139,141 %N A325128 Numbers in whose prime factorization the exponent of prime(k) is less than k for all prime indices k. %C A325128 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A325128 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears fewer than k times. Such partitions are counted by A087153. %C A325128 The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k) = 0.44070243286030291209... - _Amiram Eldar_, Feb 02 2021 %H A325128 Amiram Eldar, <a href="/A325128/b325128.txt">Table of n, a(n) for n = 1..10000</a> %e A325128 The sequence of terms together with their prime indices begins: %e A325128 1: {} %e A325128 3: {2} %e A325128 5: {3} %e A325128 7: {4} %e A325128 11: {5} %e A325128 13: {6} %e A325128 15: {2,3} %e A325128 17: {7} %e A325128 19: {8} %e A325128 21: {2,4} %e A325128 23: {9} %e A325128 25: {3,3} %e A325128 29: {10} %e A325128 31: {11} %e A325128 33: {2,5} %e A325128 35: {3,4} %e A325128 37: {12} %e A325128 39: {2,6} %e A325128 41: {13} %e A325128 43: {14} %e A325128 47: {15} %e A325128 49: {4,4} %t A325128 Select[Range[100],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k<PrimePi[p]]&] %Y A325128 Cf. A056239, A062457, A087153, A109298, A112798, A115584, A118914, A276078. %Y A325128 Cf. A324524, A324525, A324571, A325127, A325130. %K A325128 nonn %O A325128 1,2 %A A325128 _Gus Wiseman_, Apr 01 2019