This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325129 #4 Apr 01 2019 07:24:50 %S A325129 1,3,5,9,11,13,15,17,19,25,27,29,31,33,37,39,41,43,45,47,51,55,57,59, %T A325129 61,65,67,71,73,75,79,81,83,85,87,89,93,95,99,101,103,107,109,111,113, %U A325129 117,121,123,125,127,129,131,135,137,139,141,143,145,149,153,155 %N A325129 Heinz numbers of integer partitions into nonsquares (A087153). %C A325129 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325129 The sequence of terms together with their prime indices begins: %e A325129 1: {} %e A325129 3: {2} %e A325129 5: {3} %e A325129 9: {2,2} %e A325129 11: {5} %e A325129 13: {6} %e A325129 15: {2,3} %e A325129 17: {7} %e A325129 19: {8} %e A325129 25: {3,3} %e A325129 27: {2,2,2} %e A325129 29: {10} %e A325129 31: {11} %e A325129 33: {2,5} %e A325129 37: {12} %e A325129 39: {2,6} %e A325129 41: {13} %e A325129 43: {14} %e A325129 45: {2,2,3} %t A325129 Select[Range[100],!MemberQ[If[#==1,{},FactorInteger[#]],{p_,_}/;IntegerQ[Sqrt[PrimePi[p]]]]&] %Y A325129 Cf. A001156, A011757, A033461, A056239, A062457, A066328, A087153, A112798. %Y A325129 Cf. A324571, A324587, A324588, A325128, A325130. %K A325129 nonn %O A325129 1,2 %A A325129 _Gus Wiseman_, Apr 01 2019