cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325129 Heinz numbers of integer partitions into nonsquares (A087153).

This page as a plain text file.
%I A325129 #4 Apr 01 2019 07:24:50
%S A325129 1,3,5,9,11,13,15,17,19,25,27,29,31,33,37,39,41,43,45,47,51,55,57,59,
%T A325129 61,65,67,71,73,75,79,81,83,85,87,89,93,95,99,101,103,107,109,111,113,
%U A325129 117,121,123,125,127,129,131,135,137,139,141,143,145,149,153,155
%N A325129 Heinz numbers of integer partitions into nonsquares (A087153).
%C A325129 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A325129 The sequence of terms together with their prime indices begins:
%e A325129    1: {}
%e A325129    3: {2}
%e A325129    5: {3}
%e A325129    9: {2,2}
%e A325129   11: {5}
%e A325129   13: {6}
%e A325129   15: {2,3}
%e A325129   17: {7}
%e A325129   19: {8}
%e A325129   25: {3,3}
%e A325129   27: {2,2,2}
%e A325129   29: {10}
%e A325129   31: {11}
%e A325129   33: {2,5}
%e A325129   37: {12}
%e A325129   39: {2,6}
%e A325129   41: {13}
%e A325129   43: {14}
%e A325129   45: {2,2,3}
%t A325129 Select[Range[100],!MemberQ[If[#==1,{},FactorInteger[#]],{p_,_}/;IntegerQ[Sqrt[PrimePi[p]]]]&]
%Y A325129 Cf. A001156, A011757, A033461, A056239, A062457, A066328, A087153, A112798.
%Y A325129 Cf. A324571, A324587, A324588, A325128, A325130.
%K A325129 nonn
%O A325129 1,2
%A A325129 _Gus Wiseman_, Apr 01 2019