This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325130 #19 Jan 09 2021 04:48:19 %S A325130 1,3,4,5,7,8,11,12,13,15,16,17,19,20,21,23,24,25,27,28,29,31,32,33,35, %T A325130 37,39,40,41,43,44,47,48,49,51,52,53,55,56,57,59,60,61,64,65,67,68,69, %U A325130 71,73,75,76,77,79,80,81,83,84,85,87,88,89,91,92,93,95,96 %N A325130 Numbers in whose prime factorization the exponent of prime(k) is not equal to k for any prime index k. %C A325130 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A325130 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the integer partitions counted by A276429. %C A325130 The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.68974964705635552968... - _Amiram Eldar_, Jan 09 2021 %H A325130 Alois P. Heinz, <a href="/A325130/b325130.txt">Table of n, a(n) for n = 1..10000</a> %e A325130 The sequence of terms together with their prime indices begins: %e A325130 1: {} %e A325130 3: {2} %e A325130 4: {1,1} %e A325130 5: {3} %e A325130 7: {4} %e A325130 8: {1,1,1} %e A325130 11: {5} %e A325130 12: {1,1,2} %e A325130 13: {6} %e A325130 15: {2,3} %e A325130 16: {1,1,1,1} %e A325130 17: {7} %e A325130 19: {8} %e A325130 20: {1,1,3} %e A325130 21: {2,4} %e A325130 23: {9} %e A325130 24: {1,1,1,2} %e A325130 25: {3,3} %e A325130 27: {2,2,2} %e A325130 28: {1,1,4} %p A325130 q:= n-> andmap(i-> numtheory[pi](i[1])<>i[2], ifactors(n)[2]): %p A325130 a:= proc(n) option remember; local k; for k from 1+ %p A325130 `if`(n=1, 0, a(n-1)) while not q(k) do od; k %p A325130 end: %p A325130 seq(a(n), n=1..80); # _Alois P. Heinz_, Oct 28 2019 %t A325130 Select[Range[100],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k!=PrimePi[p]]&] %Y A325130 Cf. A056239, A087153, A112798, A124010, A276078, A276429. %Y A325130 Cf. A324525, A324571, A325127, A325128, A325130, A325131. %Y A325130 Complement of A276936. %K A325130 nonn %O A325130 1,2 %A A325130 _Gus Wiseman_, Apr 01 2019