cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325130 Numbers in whose prime factorization the exponent of prime(k) is not equal to k for any prime index k.

This page as a plain text file.
%I A325130 #19 Jan 09 2021 04:48:19
%S A325130 1,3,4,5,7,8,11,12,13,15,16,17,19,20,21,23,24,25,27,28,29,31,32,33,35,
%T A325130 37,39,40,41,43,44,47,48,49,51,52,53,55,56,57,59,60,61,64,65,67,68,69,
%U A325130 71,73,75,76,77,79,80,81,83,84,85,87,88,89,91,92,93,95,96
%N A325130 Numbers in whose prime factorization the exponent of prime(k) is not equal to k for any prime index k.
%C A325130 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A325130 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the integer partitions counted by A276429.
%C A325130 The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.68974964705635552968... - _Amiram Eldar_, Jan 09 2021
%H A325130 Alois P. Heinz, <a href="/A325130/b325130.txt">Table of n, a(n) for n = 1..10000</a>
%e A325130 The sequence of terms together with their prime indices begins:
%e A325130    1: {}
%e A325130    3: {2}
%e A325130    4: {1,1}
%e A325130    5: {3}
%e A325130    7: {4}
%e A325130    8: {1,1,1}
%e A325130   11: {5}
%e A325130   12: {1,1,2}
%e A325130   13: {6}
%e A325130   15: {2,3}
%e A325130   16: {1,1,1,1}
%e A325130   17: {7}
%e A325130   19: {8}
%e A325130   20: {1,1,3}
%e A325130   21: {2,4}
%e A325130   23: {9}
%e A325130   24: {1,1,1,2}
%e A325130   25: {3,3}
%e A325130   27: {2,2,2}
%e A325130   28: {1,1,4}
%p A325130 q:= n-> andmap(i-> numtheory[pi](i[1])<>i[2], ifactors(n)[2]):
%p A325130 a:= proc(n) option remember; local k; for k from 1+
%p A325130      `if`(n=1, 0, a(n-1)) while not q(k) do od; k
%p A325130     end:
%p A325130 seq(a(n), n=1..80);  # _Alois P. Heinz_, Oct 28 2019
%t A325130 Select[Range[100],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k!=PrimePi[p]]&]
%Y A325130 Cf. A056239, A087153, A112798, A124010, A276078, A276429.
%Y A325130 Cf. A324525, A324571, A325127, A325128, A325130, A325131.
%Y A325130 Complement of A276936.
%K A325130 nonn
%O A325130 1,2
%A A325130 _Gus Wiseman_, Apr 01 2019