cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325131 Heinz numbers of integer partitions where the set of distinct parts is disjoint from the set of distinct multiplicities.

This page as a plain text file.
%I A325131 #5 Apr 01 2019 07:25:06
%S A325131 1,3,4,5,7,8,11,13,15,16,17,19,21,23,25,27,29,31,32,33,35,37,39,41,43,
%T A325131 47,49,51,53,55,57,59,61,64,65,67,69,71,73,77,79,81,83,85,87,89,91,93,
%U A325131 95,97,100,101,103,105,107,109,111,113,115,119,121,123,127
%N A325131 Heinz numbers of integer partitions where the set of distinct parts is disjoint from the set of distinct multiplicities.
%C A325131 The enumeration of these partitions by sum is given by A114639.
%C A325131 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers where the prime indices are disjoint from the prime exponents.
%e A325131 The sequence of terms together with their prime indices begins:
%e A325131    1: {}
%e A325131    3: {2}
%e A325131    4: {1,1}
%e A325131    5: {3}
%e A325131    7: {4}
%e A325131    8: {1,1,1}
%e A325131   11: {5}
%e A325131   13: {6}
%e A325131   15: {2,3}
%e A325131   16: {1,1,1,1}
%e A325131   17: {7}
%e A325131   19: {8}
%e A325131   21: {2,4}
%e A325131   23: {9}
%e A325131   25: {3,3}
%e A325131   27: {2,2,2}
%e A325131   29: {10}
%e A325131   31: {11}
%e A325131   32: {1,1,1,1,1}
%e A325131   33: {2,5}
%t A325131 Select[Range[100],Intersection[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]=={}&]
%Y A325131 Cf. A000720, A001222, A056239, A109298, A112798, A114639, A118914.
%Y A325131 Cf. A324571, A325127, A325128, A325129, A325130.
%K A325131 nonn
%O A325131 1,2
%A A325131 _Gus Wiseman_, Apr 01 2019