This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325131 #5 Apr 01 2019 07:25:06 %S A325131 1,3,4,5,7,8,11,13,15,16,17,19,21,23,25,27,29,31,32,33,35,37,39,41,43, %T A325131 47,49,51,53,55,57,59,61,64,65,67,69,71,73,77,79,81,83,85,87,89,91,93, %U A325131 95,97,100,101,103,105,107,109,111,113,115,119,121,123,127 %N A325131 Heinz numbers of integer partitions where the set of distinct parts is disjoint from the set of distinct multiplicities. %C A325131 The enumeration of these partitions by sum is given by A114639. %C A325131 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers where the prime indices are disjoint from the prime exponents. %e A325131 The sequence of terms together with their prime indices begins: %e A325131 1: {} %e A325131 3: {2} %e A325131 4: {1,1} %e A325131 5: {3} %e A325131 7: {4} %e A325131 8: {1,1,1} %e A325131 11: {5} %e A325131 13: {6} %e A325131 15: {2,3} %e A325131 16: {1,1,1,1} %e A325131 17: {7} %e A325131 19: {8} %e A325131 21: {2,4} %e A325131 23: {9} %e A325131 25: {3,3} %e A325131 27: {2,2,2} %e A325131 29: {10} %e A325131 31: {11} %e A325131 32: {1,1,1,1,1} %e A325131 33: {2,5} %t A325131 Select[Range[100],Intersection[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]=={}&] %Y A325131 Cf. A000720, A001222, A056239, A109298, A112798, A114639, A118914. %Y A325131 Cf. A324571, A325127, A325128, A325129, A325130. %K A325131 nonn %O A325131 1,2 %A A325131 _Gus Wiseman_, Apr 01 2019