This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325132 #10 Nov 29 2020 08:18:57 %S A325132 1,0,1,1,1,1,2,1,3,2,4,3,5,4,6,6,7,7,10,8,11,12,12,14,17,16,20,22,24, %T A325132 26,31,31,37,39,43,46,54,53,63,65,73,75,87,87,100,102,115,117,133,134, %U A325132 151,155,172,176,197,202,223,231,254,262,290,298,327,341,370 %N A325132 Number of integer partitions of n where the multiplicity of each part k is at least prime(k). %C A325132 The Heinz numbers of these partitions are given by A054744. %F A325132 G.f.: Product_{k>=1} (1 + x^(prime(k)*k) / (1 - x^k)). - _Ilya Gutkovskiy_, Nov 28 2020 %e A325132 The first few terms count the following integer partitions: %e A325132 0: () %e A325132 2: (11) %e A325132 3: (111) %e A325132 4: (1111) %e A325132 5: (11111) %e A325132 6: (222) %e A325132 6: (111111) %e A325132 7: (1111111) %e A325132 8: (2222) %e A325132 8: (22211) %e A325132 8: (11111111) %e A325132 9: (222111) %e A325132 9: (111111111) %e A325132 10: (22222) %e A325132 10: (222211) %e A325132 10: (2221111) %e A325132 10: (1111111111) %e A325132 11: (2222111) %e A325132 11: (22211111) %e A325132 11: (11111111111) %e A325132 12: (222222) %e A325132 12: (2222211) %e A325132 12: (22221111) %e A325132 12: (222111111) %e A325132 12: (111111111111) %t A325132 Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]>=Prime[i],{i,Union[#]}]&]],{n,0,30}] %Y A325132 Cf. A052335, A054744, A062457, A087153, A117144, A324525, A324572. %K A325132 nonn %O A325132 0,7 %A A325132 _Gus Wiseman_, Apr 01 2019