A325137 Triangle T(n, k) = [x^n] (n + k + x)!/(k + x)! for 0 <= k <= n, read by rows.
1, 1, 1, 2, 5, 1, 6, 26, 12, 1, 24, 154, 119, 22, 1, 120, 1044, 1175, 355, 35, 1, 720, 8028, 12154, 5265, 835, 51, 1, 5040, 69264, 133938, 77224, 17360, 1687, 70, 1, 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 1 [2] 2, 5, 1 [3] 6, 26, 12, 1 [4] 24, 154, 119, 22, 1 [5] 120, 1044, 1175, 355, 35, 1 [6] 720, 8028, 12154, 5265, 835, 51, 1 [7] 5040, 69264, 133938, 77224, 17360, 1687, 70, 1 [8] 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1 [9] 362880, 6999840, 19978308, 17893196, 6687009, 1197273, 109494, 5154, 117, 1 A000142, A001705, A001712, A001718, A001724, ...
Programs
-
Maple
T := (n, k) -> add(binomial(j+k, k)*(k+1)^j*abs(Stirling1(n, j+k)), j=0..n-k); seq(seq(T(n,k), k=0..n), n=0..8); # Note that for n > 16 Maple fails (at least in some versions) to compute the # terms properly. Inserting 'simplify' or numerical evaluation might help. A325137Row := proc(n) local ogf, ser; ogf := (n, k) -> (n+k+x)!/(k+x)!; ser := (n, k) -> series(ogf(n,k),x,k+2); seq(coeff(ser(n,k),x,k), k=0..n) end: seq(A325137Row(n), n=0..8);
Formula
T(n, k) = Sum_{j=0..n-k} binomial(j+k, k)*|Stirling1(n, j+k)|*(k+1)^j.
Comments