A325139 Triangle T(n, k) = [t^n] Gamma(n + k + m + t)/Gamma(k + m + t) for m = 2 and 0 <= k <= n, read by rows.
1, 2, 1, 6, 7, 1, 24, 47, 15, 1, 120, 342, 179, 26, 1, 720, 2754, 2070, 485, 40, 1, 5040, 24552, 24574, 8175, 1075, 57, 1, 40320, 241128, 305956, 134449, 24885, 2086, 77, 1, 362880, 2592720, 4028156, 2231012, 541849, 63504, 3682, 100, 1
Offset: 0
Examples
0: 1; 1: 2, 1; 2: 6, 7, 1; 3: 24, 47, 15, 1; 4: 120, 342, 179, 26, 1; 5: 720, 2754, 2070, 485, 40, 1; 6: 5040, 24552, 24574, 8175, 1075, 57, 1; 7: 40320, 241128, 305956, 134449, 24885, 2086, 77, 1; 8: 362880, 2592720, 4028156, 2231012, 541849, 63504, 3682, 100, 1; 9: 3628800, 30334320, 56231712, 37972304, 11563650, 1768809, 142632, 6054, 126, 1; A: A000142, A001711, A001717, A001723, ...
Crossrefs
Programs
-
Maple
T := (n, k) -> add(binomial(j+k, k)*(k+2)^j*abs(Stirling1(n, j+k)), j=0..n-k): seq(seq(T(n, k), k=0..n), n=0..8); # Note that for n > 16 Maple fails (at least in some versions) to compute the # terms properly. Inserting 'simplify' or numerical evaluation might help. A325139Row := proc(n) local ogf, ser; ogf := (n, k) -> GAMMA(n+k+2+x)/GAMMA(k+2+x); ser := (n, k) -> series(ogf(n,k), x, k+2); seq(coeff(ser(n,k), x, k), k=0..n) end: seq(A325139Row(n), n=0..9);
Formula
T(n, k) = Sum_{j=0..n-k} binomial(j+k, k)*abs(Stirling1(n, j+k))*(k+2)^j.