A325143 Primes represented by cyclotomic binary forms.
3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 73, 79, 89, 97, 101, 103, 109, 113, 127, 137, 139, 149, 151, 157, 163, 173, 181, 193, 197, 199, 211, 223, 229, 233, 241, 257, 269, 271, 277, 281, 283, 293, 307, 313, 317, 331, 337, 349, 353, 367, 373
Offset: 1
Keywords
Links
- Peter Luschny, Table of n, a(n) for n = 1..10000
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, Acta Arithmetica 184 (2018), 67-86; arXiv:1712.09019, arXiv:1712.09019 [math.NT], 2017.
Crossrefs
Programs
-
Julia
using Nemo function isA325143(n) (n < 3 || !isprime(ZZ(n))) && return false R, x = PolynomialRing(ZZ, "x") K = floor(Int, 5.383*log(n)^1.161) # Bounds from M = floor(Int, 2*sqrt(n/3)) # Fouvry & Levesque & Waldschmidt N = QQ(n) for k in 3:K e = Int(eulerphi(ZZ(k))) c = cyclotomic(k, x) for m in 1:M, j in 0:M if max(j, m) > 1 N == m^e*subst(c, QQ(j,m)) && return true end end end return false end [n for n in 1:373 if isA325143(n)] |> println
Comments