This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325146 #16 Jan 05 2024 13:30:06 %S A325146 1,0,1,0,1,1,0,4,2,1,0,2,14,3,1,0,48,12,30,4,1,0,16,496,36,52,5,1,0, %T A325146 576,288,2064,80,80,6,1,0,144,18288,1656,5832,150,114,7,1,0,3840,8160, %U A325146 145200,5920,13240,252,154,8,1 %N A325146 A(n, k) = Stirling2(n + k, k)*A053657(n)*k!/(n + k)!, array read by ascending antidiagonals for n >= 0 and k >= 0. %e A325146 [0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 %e A325146 [1] 0, 1, 2, 3, 4, 5, 6, 7, ... A001477 %e A325146 [2] 0, 4, 14, 30, 52, 80, 114, 154, ... A049451 %e A325146 [3] 0, 2, 12, 36, 80, 150, 252, 392, ... A011379 %e A325146 [4] 0, 48, 496, 2064, 5832, 13240, 26088, 46536, ... %e A325146 [5] 0, 16, 288, 1656, 5920, 16200, 37296, 76048, ... %e A325146 [6] 0, 576, 18288, 145200, 654816, 2153280, 5775936, 13429248, ... %e A325146 A163176 %p A325146 A := (n, k) -> Stirling2(n + k, k)*A053657(n)*k!/(n + k)!: %p A325146 seq(seq(A(n - k, k), k=0..n), n=0..10); %t A325146 a053657[n_] := Product[p^Sum[Floor[(n-1) / ((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; %t A325146 A[n_, k_] := StirlingS2[n+k, k] a053657[n+1] k! / (n+k)!; %t A325146 Table[A[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 21 2019 *) %Y A325146 Rows include A001477, A049451, A011379. Columns include A163176. %Y A325146 Cf. A053657. %K A325146 nonn,tabl %O A325146 0,8 %A A325146 _Peter Luschny_, May 22 2019