A325147 Reduced Clausen numbers.
10, 546, 2, 46, 6630, 76670, 211659630, 6, 261870, 111418, 46, 13589784390, 524588442, 114, 1138240087314330, 2, 276742830, 26805565070, 1909802752494, 3210, 15370, 177430547680928732190, 358, 5760551069383110, 76004922, 1126, 4347631610092420338, 81366
Offset: 1
Keywords
Examples
Let n = 561 then P(561) = {3, 11, 17} and P(Clausen(560,1)) = {2, 3, 5, 11, 17, 29, 41, 71, 113, 281}. Since P(561) is a subset of P(Clausen(560, 1)), a(18) = 2*5*29*41*71*113*281 = 26805565070.
Crossrefs
Programs
-
Maple
with(numtheory): a := proc(n) if isweakCarmichael(n) then # cf. A225498 and A160014 mul(m, m in factorset(Clausen(n-1, 1)) minus factorset(n)) else NULL fi end: seq(a(n), n=2..1350);
-
Mathematica
pf[n_] := FactorInteger[n][[All, 1]]; Clausen[0, ] = 1; Clausen[n, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k]&] + k); weakCarmQ[n_] := If[EvenQ[n] || PrimeQ[n], Return[False], pf[n] == (pf[n] ~Intersection~ pf[Clausen[n - 1, 1]])]; f[n_] := Times @@ Complement[pf[Clausen[n - 1, 1]], pf[n]]; f /@ Select[Range[2, 2000], weakCarmQ] (* Jean-François Alcover, Jul 21 2019 *)
Comments