This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325148 #58 Jun 09 2021 23:32:27 %S A325148 0,1,4,9,16,25,36,49,64,81,100,121,400,484,900,1089,1600,1936,2500, %T A325148 3025,3600,4356,4900,5929,6400,7744,8100,9801,10000,10201,12100,12321, %U A325148 14641,17161,19881,22801,25921,29241,32761,36481,40000,40804,44944,48400,49284,53824,58564,63504,68644,73984,79524,85264 %N A325148 Squares which can be expressed as the product of a number and its reversal. %C A325148 The numbers k such that k * rev(k) is a square are in A306273. %C A325148 The squares of palindromes of A014186 are a subsequence. %C A325148 The square roots of the first 65 terms of this sequence (from 0 to 160000) are exactly the first 65 terms of A061917. Then a(66) = 162409 = 403^2 and the non-palindrome 403 is the first term of another sequence A325151. %H A325148 Chai Wah Wu, <a href="/A325148/b325148.txt">Table of n, a(n) for n = 1..10000</a> (terms for n = 1..231 from R. J. Mathar) %H A325148 Bernard Schott, <a href="/A325148/a325148.pdf">The different ways</a> %F A325148 Intersection of A305231 and A000290. - _R. J. Mathar_, Aug 09 2019 %e A325148 Zero ways: 169 = 13^2 cannot be equal to k * rev(k). %e A325148 One way: 400 = 200 * 2; 10201 = 101 * 101; 162409 = 169 * 961. %e A325148 Two ways: 7683984 = 2772 * 2772 = 1584 * 4851. %e A325148 Three ways: 6350400 = 14400 * 441 = 25200 * 252 = 44100 * 144. %p A325148 isA305231 := proc(n) %p A325148 local d; %p A325148 for d in numtheory[divisors](n) do %p A325148 if d = digrev(n/d) then %p A325148 return true ; %p A325148 end if; %p A325148 end do: %p A325148 false ; %p A325148 end proc: %p A325148 n := 1; %p A325148 for i from 0 to 4000 do %p A325148 i2 := i^2 ; %p A325148 if isA305231(i2) then %p A325148 printf("%d %d\n",n,i2) ; %p A325148 n := n+1 ; %p A325148 end if; %p A325148 end do: # _R. J. Mathar_, Aug 09 2019 %t A325148 {0}~Join~Select[Range[10^3]^2,(d1=Select[Divisors[n=#],#<=Sqrt@n&];Or@@Table[d1[[k]]==(IntegerReverse/@(n/d1))[[k]],{k,Length@d1}])&] (* _Giorgos Kalogeropoulos_, Jun 09 2021 *) %o A325148 (Python) %o A325148 from sympy import divisors %o A325148 A325148_list = [0] %o A325148 for n in range(10**6): %o A325148 n2 = n**2 %o A325148 for m in divisors(n2): %o A325148 if m > n: %o A325148 break %o A325148 if m == int(str(n2//m)[::-1]): %o A325148 A325148_list.append(n2) %o A325148 break # _Chai Wah Wu_, Jun 09 2021 %Y A325148 Equals A325149 Union A083408. %Y A325148 Cf. A325149 (only one way), A083408 (at least two ways). A325150 (exactly two ways), A307019 (exactly three ways). %Y A325148 Subsequences: A014186 (square of palindromes), A076750 (product of a non-palindrome and its reversal, where leading zeros are not allowed). %Y A325148 Cf. A061917, A325151 (some square roots of this sequence). %K A325148 nonn,base %O A325148 1,3 %A A325148 _Bernard Schott_, Apr 03 2019 %E A325148 Definition corrected by _N. J. A. Sloane_, Aug 01 2019