This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325160 #20 Sep 24 2022 05:47:25 %S A325160 1,2,3,5,7,10,11,13,14,17,19,21,22,23,26,29,31,33,34,37,38,39,41,43, %T A325160 46,47,51,53,55,57,58,59,61,62,65,67,69,71,73,74,79,82,83,85,86,87,89, %U A325160 91,93,94,95,97,101,103,106,107,109,110,111,113,115,118,119 %N A325160 Products of distinct, non-consecutive primes. Squarefree numbers not divisible by any two consecutive primes. %C A325160 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions into distinct non-consecutive parts (counted by A003114). The nonsquarefree case is A319630, which gives the Heinz numbers of integer partitions with no consecutive parts (counted by A116931). %C A325160 The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 52, 515, 5146, 51435, 514416, 5144232, 51442384, ... . Apparently, the asymptotic density of this sequence exists and equals 0.51442... . - _Amiram Eldar_, Sep 24 2022 %H A325160 Amiram Eldar, <a href="/A325160/b325160.txt">Table of n, a(n) for n = 1..10000</a> %e A325160 The sequence of terms together with their prime indices begins: %e A325160 1: {} %e A325160 2: {1} %e A325160 3: {2} %e A325160 5: {3} %e A325160 7: {4} %e A325160 10: {1,3} %e A325160 11: {5} %e A325160 13: {6} %e A325160 14: {1,4} %e A325160 17: {7} %e A325160 19: {8} %e A325160 21: {2,4} %e A325160 22: {1,5} %e A325160 23: {9} %e A325160 26: {1,6} %e A325160 29: {10} %e A325160 31: {11} %e A325160 33: {2,5} %e A325160 34: {1,7} %e A325160 37: {12} %t A325160 Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&] %o A325160 (PARI) isok(k) = {if (issquarefree(k), my(v = apply(primepi, factor(k)[,1])); ! #select(x->(v[x+1]-v[x] == 1), [1..#v-1]));} \\ _Michel Marcus_, Jan 09 2021 %Y A325160 Cf. A001227, A003114, A005117, A025157, A034296, A056239, A073485, A073491, A089995, A112798, A116931, A319630, A325161, A325162. %K A325160 nonn %O A325160 1,2 %A A325160 _Gus Wiseman_, Apr 05 2019