This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325161 #9 Jan 09 2021 04:44:25 %S A325161 1,10,14,21,22,26,33,34,38,39,46,51,55,57,58,62,65,69,74,82,85,86,87, %T A325161 91,93,94,95,106,110,111,115,118,119,122,123,129,130,133,134,141,142, %U A325161 145,146,155,158,159,161,166,170,177,178,182,183,185,187,190,194,201 %N A325161 Nonprime squarefree numbers not divisible by any two consecutive primes. %C A325161 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of non-singleton integer partitions into distinct non-consecutive parts (counted by A003114 minus 1). %H A325161 Amiram Eldar, <a href="/A325161/b325161.txt">Table of n, a(n) for n = 1..10000</a> %e A325161 The sequence of terms together with their prime indices begins: %e A325161 1: {} %e A325161 10: {1,3} %e A325161 14: {1,4} %e A325161 21: {2,4} %e A325161 22: {1,5} %e A325161 26: {1,6} %e A325161 33: {2,5} %e A325161 34: {1,7} %e A325161 38: {1,8} %e A325161 39: {2,6} %e A325161 46: {1,9} %e A325161 51: {2,7} %e A325161 55: {3,5} %e A325161 57: {2,8} %e A325161 58: {1,10} %e A325161 62: {1,11} %e A325161 65: {3,6} %e A325161 69: {2,9} %e A325161 74: {1,12} %e A325161 82: {1,13} %t A325161 Select[Range[100],!PrimeQ[#]&&Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&] %Y A325161 Cf. A001227, A003114, A005117, A025157, A034296, A056239, A073485, A073491, A089995, A112798, A116931, A319630, A325160, A325162. %K A325161 nonn %O A325161 1,2 %A A325161 _Gus Wiseman_, Apr 05 2019