cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325161 Nonprime squarefree numbers not divisible by any two consecutive primes.

This page as a plain text file.
%I A325161 #9 Jan 09 2021 04:44:25
%S A325161 1,10,14,21,22,26,33,34,38,39,46,51,55,57,58,62,65,69,74,82,85,86,87,
%T A325161 91,93,94,95,106,110,111,115,118,119,122,123,129,130,133,134,141,142,
%U A325161 145,146,155,158,159,161,166,170,177,178,182,183,185,187,190,194,201
%N A325161 Nonprime squarefree numbers not divisible by any two consecutive primes.
%C A325161 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of non-singleton integer partitions into distinct non-consecutive parts (counted by A003114 minus 1).
%H A325161 Amiram Eldar, <a href="/A325161/b325161.txt">Table of n, a(n) for n = 1..10000</a>
%e A325161 The sequence of terms together with their prime indices begins:
%e A325161    1: {}
%e A325161   10: {1,3}
%e A325161   14: {1,4}
%e A325161   21: {2,4}
%e A325161   22: {1,5}
%e A325161   26: {1,6}
%e A325161   33: {2,5}
%e A325161   34: {1,7}
%e A325161   38: {1,8}
%e A325161   39: {2,6}
%e A325161   46: {1,9}
%e A325161   51: {2,7}
%e A325161   55: {3,5}
%e A325161   57: {2,8}
%e A325161   58: {1,10}
%e A325161   62: {1,11}
%e A325161   65: {3,6}
%e A325161   69: {2,9}
%e A325161   74: {1,12}
%e A325161   82: {1,13}
%t A325161 Select[Range[100],!PrimeQ[#]&&Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
%Y A325161 Cf. A001227, A003114, A005117, A025157, A034296, A056239, A073485, A073491, A089995, A112798, A116931, A319630, A325160, A325162.
%K A325161 nonn
%O A325161 1,2
%A A325161 _Gus Wiseman_, Apr 05 2019