This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325162 #10 Apr 08 2019 11:10:09 %S A325162 1,2,3,5,7,11,13,14,17,19,22,23,26,29,31,33,34,37,38,39,41,43,46,47, %T A325162 51,53,57,58,59,61,62,65,67,69,71,73,74,79,82,83,85,86,87,89,93,94,95, %U A325162 97,101,103,106,107,109,111,113,115,118,119,122,123,127,129,131 %N A325162 Squarefree numbers with no two prime indices differing by less than 3. %C A325162 A prime index of n is a number m such that prime(m) divides n. %C A325162 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions into distinct parts, no two differing by less than 3 (counted by A025157). %H A325162 Robert Israel, <a href="/A325162/b325162.txt">Table of n, a(n) for n = 1..10000</a> %e A325162 The sequence of terms together with their prime indices begins: %e A325162 1: {} %e A325162 2: {1} %e A325162 3: {2} %e A325162 5: {3} %e A325162 7: {4} %e A325162 11: {5} %e A325162 13: {6} %e A325162 14: {1,4} %e A325162 17: {7} %e A325162 19: {8} %e A325162 22: {1,5} %e A325162 23: {9} %e A325162 26: {1,6} %e A325162 29: {10} %e A325162 31: {11} %e A325162 33: {2,5} %e A325162 34: {1,7} %e A325162 37: {12} %e A325162 38: {1,8} %e A325162 39: {2,6} %p A325162 filter:= proc(n) local F; %p A325162 F:= ifactors(n)[2]; %p A325162 if ormap(t -> t[2]>1, F) then return false fi; %p A325162 if nops(F) <= 1 then return true fi; %p A325162 F:= map(numtheory:-pi,sort(map(t -> t[1],F))); %p A325162 min(F[2..-1]-F[1..-2]) >= 3; %p A325162 end proc: %p A325162 select(filter, [$1..200]); # _Robert Israel_, Apr 08 2019 %t A325162 Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>2&] %Y A325162 Cf. A001227, A003114, A005117, A025157, A034296, A056239, A073485, A073491, A089995, A112798, A116931, A319630, A325160, A325161. %K A325162 nonn %O A325162 1,2 %A A325162 _Gus Wiseman_, Apr 05 2019