cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325164 Heinz numbers of integer partitions with Durfee square of length 2.

This page as a plain text file.
%I A325164 #6 Apr 05 2019 09:29:18
%S A325164 9,15,18,21,25,27,30,33,35,36,39,42,45,49,50,51,54,55,57,60,63,65,66,
%T A325164 69,70,72,75,77,78,81,84,85,87,90,91,93,95,98,99,100,102,105,108,110,
%U A325164 111,114,115,117,119,120,121,123,126,129,130,132,133,135,138,140
%N A325164 Heinz numbers of integer partitions with Durfee square of length 2.
%C A325164 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325164 Also positions of 2 in A257990.
%C A325164 First differs from A105441 in lacking 125.
%C A325164 The Durfee length 1 case is A093641. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485.
%H A325164 Gus Wiseman, <a href="/A325164/a325164.png">Young diagrams corresponding to the first 36 terms.</a>
%e A325164 The sequence of terms together with their prime indices begins:
%e A325164    9: {2,2}
%e A325164   15: {2,3}
%e A325164   18: {1,2,2}
%e A325164   21: {2,4}
%e A325164   25: {3,3}
%e A325164   27: {2,2,2}
%e A325164   30: {1,2,3}
%e A325164   33: {2,5}
%e A325164   35: {3,4}
%e A325164   36: {1,1,2,2}
%e A325164   39: {2,6}
%e A325164   42: {1,2,4}
%e A325164   45: {2,2,3}
%e A325164   49: {4,4}
%e A325164   50: {1,3,3}
%e A325164   51: {2,7}
%e A325164   54: {1,2,2,2}
%e A325164   55: {3,5}
%e A325164   57: {2,8}
%e A325164   60: {1,1,2,3}
%t A325164 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
%t A325164 Select[Range[100],durf[#]==2&]
%Y A325164 Cf. A006918, A056239, A093641, A112798, A115994, A117485, A252464, A257990, A325163, A325170.
%K A325164 nonn
%O A325164 1,1
%A A325164 _Gus Wiseman_, Apr 05 2019