This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325164 #6 Apr 05 2019 09:29:18 %S A325164 9,15,18,21,25,27,30,33,35,36,39,42,45,49,50,51,54,55,57,60,63,65,66, %T A325164 69,70,72,75,77,78,81,84,85,87,90,91,93,95,98,99,100,102,105,108,110, %U A325164 111,114,115,117,119,120,121,123,126,129,130,132,133,135,138,140 %N A325164 Heinz numbers of integer partitions with Durfee square of length 2. %C A325164 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325164 Also positions of 2 in A257990. %C A325164 First differs from A105441 in lacking 125. %C A325164 The Durfee length 1 case is A093641. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485. %H A325164 Gus Wiseman, <a href="/A325164/a325164.png">Young diagrams corresponding to the first 36 terms.</a> %e A325164 The sequence of terms together with their prime indices begins: %e A325164 9: {2,2} %e A325164 15: {2,3} %e A325164 18: {1,2,2} %e A325164 21: {2,4} %e A325164 25: {3,3} %e A325164 27: {2,2,2} %e A325164 30: {1,2,3} %e A325164 33: {2,5} %e A325164 35: {3,4} %e A325164 36: {1,1,2,2} %e A325164 39: {2,6} %e A325164 42: {1,2,4} %e A325164 45: {2,2,3} %e A325164 49: {4,4} %e A325164 50: {1,3,3} %e A325164 51: {2,7} %e A325164 54: {1,2,2,2} %e A325164 55: {3,5} %e A325164 57: {2,8} %e A325164 60: {1,1,2,3} %t A325164 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]]; %t A325164 Select[Range[100],durf[#]==2&] %Y A325164 Cf. A006918, A056239, A093641, A112798, A115994, A117485, A252464, A257990, A325163, A325170. %K A325164 nonn %O A325164 1,1 %A A325164 _Gus Wiseman_, Apr 05 2019