cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325166 Size of the internal portion of the integer partition with Heinz number n.

This page as a plain text file.
%I A325166 #10 Apr 19 2019 11:22:02
%S A325166 0,0,0,0,0,1,0,0,1,1,0,1,0,1,2,0,0,2,0,1,2,1,0,1,2,1,2,1,0,3,0,0,2,1,
%T A325166 3,2,0,1,2,1,0,3,0,1,3,1,0,1,3,3,2,1,0,3,3,1,2,1,0,3,0,1,3,0,3,3,0,1,
%U A325166 2,4,0,2,0,1,4,1,4,3,0,1,3,1,0,3,3,1,2,1,0,4,4,1,2,1,3,1,0,4,3,3,0,3,0,1,5
%N A325166 Size of the internal portion of the integer partition with Heinz number n.
%C A325166 The internal portion of an integer partition consists of all squares in the Young diagram that have a square both directly below and directly to the right.
%C A325166 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325166 Antti Karttunen, <a href="/A325166/b325166.txt">Table of n, a(n) for n = 1..20000</a>
%H A325166 Antti Karttunen, <a href="/A325166/a325166.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%F A325166 a(n) = A056239(n) - A061395(n) - A001222(n) + A001221(n).
%F A325166 a(n) = A056239(n) - A297113(n).
%e A325166 The partition with Heinz number 7865 is (6,5,5,3), with diagram
%e A325166   o o o o o o
%e A325166   o o o o o
%e A325166   o o o o o
%e A325166   o o o
%e A325166 with internal portion
%e A325166   o o o o o
%e A325166   o o o o
%e A325166   o o o
%e A325166 of size 12, so a(7865) = 12.
%t A325166 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325166 Table[If[n==1,0,Total[primeMS[n]]-Max[primeMS[n]]-Length[primeMS[n]]+Length[Union[primeMS[n]]]],{n,100}]
%o A325166 (PARI)
%o A325166 A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
%o A325166 A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
%o A325166 A325166(n) = (A056239(n) - A061395(n) - bigomega(n) + omega(n)); \\ _Antti Karttunen_, Apr 14 2019
%Y A325166 Positions of zeros are A174090.
%Y A325166 Cf. A001221, A001222, A052126, A056239, A061395, A064989, A065770, A112798, A252464, A257990, A297113, A325133, A325135, A325167, A325169.
%K A325166 nonn
%O A325166 1,15
%A A325166 _Gus Wiseman_, Apr 05 2019
%E A325166 More terms from _Antti Karttunen_, Apr 14 2019