cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325167 Heinz number of the internal portion of the integer partition with Heinz number n.

This page as a plain text file.
%I A325167 #6 Apr 06 2019 09:59:43
%S A325167 1,1,1,1,1,2,1,1,2,2,1,2,1,2,3,1,1,4,1,2,3,2,1,2,3,2,4,2,1,6,1,1,3,2,
%T A325167 5,4,1,2,3,2,1,6,1,2,6,2,1,2,5,6,3,2,1,8,5,2,3,2,1,6,1,2,6,1,5,6,1,2,
%U A325167 3,10,1,4,1,2,9,2,7,6,1,2,8,2,1,6,5,2,3
%N A325167 Heinz number of the internal portion of the integer partition with Heinz number n.
%C A325167 The internal portion of an integer partition consists of all squares in the Young diagram that have a square both directly below and directly to the right.
%C A325167 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A325167 The partition with Heinz number 7865 is (6,5,5,3), with diagram
%e A325167   o o o o o o
%e A325167   o o o o o
%e A325167   o o o o o
%e A325167   o o o
%e A325167 with internal portion
%e A325167   o o o o o
%e A325167   o o o o
%e A325167   o o o
%e A325167 which is the partition (5,4,3), with Heinz number 385, so a(7865) = 385.
%Y A325167 Cf. A052126, A056239, A064989, A065770, A093641, A112798, A257990, A297113, A325133, A325166, A325169.
%K A325167 nonn
%O A325167 1,6
%A A325167 _Gus Wiseman_, Apr 05 2019