This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325167 #6 Apr 06 2019 09:59:43 %S A325167 1,1,1,1,1,2,1,1,2,2,1,2,1,2,3,1,1,4,1,2,3,2,1,2,3,2,4,2,1,6,1,1,3,2, %T A325167 5,4,1,2,3,2,1,6,1,2,6,2,1,2,5,6,3,2,1,8,5,2,3,2,1,6,1,2,6,1,5,6,1,2, %U A325167 3,10,1,4,1,2,9,2,7,6,1,2,8,2,1,6,5,2,3 %N A325167 Heinz number of the internal portion of the integer partition with Heinz number n. %C A325167 The internal portion of an integer partition consists of all squares in the Young diagram that have a square both directly below and directly to the right. %C A325167 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325167 The partition with Heinz number 7865 is (6,5,5,3), with diagram %e A325167 o o o o o o %e A325167 o o o o o %e A325167 o o o o o %e A325167 o o o %e A325167 with internal portion %e A325167 o o o o o %e A325167 o o o o %e A325167 o o o %e A325167 which is the partition (5,4,3), with Heinz number 385, so a(7865) = 385. %Y A325167 Cf. A052126, A056239, A064989, A065770, A093641, A112798, A257990, A297113, A325133, A325166, A325169. %K A325167 nonn %O A325167 1,6 %A A325167 _Gus Wiseman_, Apr 05 2019