This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325170 #9 Jan 08 2021 21:17:21 %S A325170 6,9,10,12,14,15,18,20,21,22,24,25,26,27,28,33,34,35,36,38,39,40,44, %T A325170 46,48,49,51,52,54,55,56,57,58,62,65,68,69,72,74,76,77,80,81,82,85,86, %U A325170 87,88,91,92,93,94,95,96,104,106,108,111,112,115,116,118,119 %N A325170 Heinz numbers of integer partitions with origin-to-boundary graph-distance equal to 2. %C A325170 The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps East or South from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the minimum triangular partition contained inside the diagram. %C A325170 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325170 Gus Wiseman, <a href="/A325170/a325170.png">Young diagrams corresponding to the first 50 terms.</a> %e A325170 The sequence of terms together with their prime indices begins: %e A325170 6: {1,2} %e A325170 9: {2,2} %e A325170 10: {1,3} %e A325170 12: {1,1,2} %e A325170 14: {1,4} %e A325170 15: {2,3} %e A325170 18: {1,2,2} %e A325170 20: {1,1,3} %e A325170 21: {2,4} %e A325170 22: {1,5} %e A325170 24: {1,1,1,2} %e A325170 25: {3,3} %e A325170 26: {1,6} %e A325170 27: {2,2,2} %e A325170 28: {1,1,4} %e A325170 33: {2,5} %e A325170 34: {1,7} %e A325170 35: {3,4} %e A325170 36: {1,1,2,2} %e A325170 38: {1,8} %t A325170 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325170 otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; %t A325170 Select[Range[200],otb[Reverse[primeMS[#]]]==2&] %Y A325170 Cf. A001221, A001222, A006918, A056239, A065770, A112798, A174090, A257990, A297113, A325167, A325169. %K A325170 nonn %O A325170 1,1 %A A325170 _Gus Wiseman_, Apr 05 2019