cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325178 Difference between the length of the minimal square containing and the maximal square contained in the Young diagram of the integer partition with Heinz number n.

This page as a plain text file.
%I A325178 #8 Apr 10 2019 22:01:35
%S A325178 0,0,1,1,2,1,3,2,0,2,4,2,5,3,1,3,6,1,7,2,2,4,8,3,1,5,1,3,9,1,10,4,3,6,
%T A325178 2,2,11,7,4,3,12,2,13,4,1,8,14,4,2,1,5,5,15,2,3,3,6,9,16,2,17,10,2,5,
%U A325178 4,3,18,6,7,2,19,3,20,11,1,7,3,4,21,4,2,12
%N A325178 Difference between the length of the minimal square containing and the maximal square contained in the Young diagram of the integer partition with Heinz number n.
%C A325178 The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.
%C A325178 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%D A325178 Richard P. Stanley, Enumerative Combinatorics, Volume 2,  Cambridge University Press, 1999, p. 289.
%H A325178 Wikipedia, <a href="https://en.wikipedia.org/wiki/Durfee_square">Durfee square</a>.
%F A325178 a(n) = A263297(n) - A257990(n).
%e A325178 The partition (3,3,2,1) has Heinz number 150 and diagram
%e A325178   o o o
%e A325178   o o o
%e A325178   o o
%e A325178   o
%e A325178 containing maximal square
%e A325178   o o
%e A325178   o o
%e A325178 and contained in minimal square
%e A325178   o o o o
%e A325178   o o o o
%e A325178   o o o o
%e A325178   o o o o
%e A325178 so a(150) = 4 - 2 = 2.
%t A325178 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
%t A325178 codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
%t A325178 Table[codurf[n]-durf[n],{n,100}]
%Y A325178 Positions of zeros are A062457. Positions of 1's are A325179. Positions of 2's are A325180.
%Y A325178 Cf. A001222, A046660, A051924, A056239, A061395, A093641, A096771, A115994, A243055, A257990, A263297, A325192, A325195.
%K A325178 nonn
%O A325178 1,5
%A A325178 _Gus Wiseman_, Apr 08 2019