This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325179 #6 Apr 10 2019 22:03:00 %S A325179 3,4,6,15,18,25,27,30,45,50,75,175,245,250,343,350,375,490,525,625, %T A325179 686,735,875,1029,1225,1715,3773,4802,5929,7203,7546,9317,11319,11858, %U A325179 12005,14641,16807,17787,18634,18865,26411,27951,29282,29645,41503,43923,46585 %N A325179 Heinz numbers of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1. %C A325179 The enumeration of these partitions by sum is given by A325181. %C A325179 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325179 Gus Wiseman, <a href="/A325179/a325179.png">Young diagrams for the first 32 terms</a>. %e A325179 The sequence of terms together with their prime indices begins: %e A325179 3: {2} %e A325179 4: {1,1} %e A325179 6: {1,2} %e A325179 15: {2,3} %e A325179 18: {1,2,2} %e A325179 25: {3,3} %e A325179 27: {2,2,2} %e A325179 30: {1,2,3} %e A325179 45: {2,2,3} %e A325179 50: {1,3,3} %e A325179 75: {2,3,3} %e A325179 175: {3,3,4} %e A325179 245: {3,4,4} %e A325179 250: {1,3,3,3} %e A325179 343: {4,4,4} %e A325179 350: {1,3,3,4} %e A325179 375: {2,3,3,3} %e A325179 490: {1,3,4,4} %e A325179 525: {2,3,3,4} %e A325179 625: {3,3,3,3} %t A325179 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]]; %t A325179 codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]]; %t A325179 Select[Range[1000],codurf[#]-durf[#]==1&] %Y A325179 Numbers k such that A263297(k) - A257990(k) = 1. %Y A325179 Positions of 1's in A325178. %Y A325179 Cf. A056239, A093641, A112798, A325180, A325181, A325192, A325196, A325198. %K A325179 nonn %O A325179 1,1 %A A325179 _Gus Wiseman_, Apr 08 2019