cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325179 Heinz numbers of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.

This page as a plain text file.
%I A325179 #6 Apr 10 2019 22:03:00
%S A325179 3,4,6,15,18,25,27,30,45,50,75,175,245,250,343,350,375,490,525,625,
%T A325179 686,735,875,1029,1225,1715,3773,4802,5929,7203,7546,9317,11319,11858,
%U A325179 12005,14641,16807,17787,18634,18865,26411,27951,29282,29645,41503,43923,46585
%N A325179 Heinz numbers of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.
%C A325179 The enumeration of these partitions by sum is given by A325181.
%C A325179 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325179 Gus Wiseman, <a href="/A325179/a325179.png">Young diagrams for the first 32 terms</a>.
%e A325179 The sequence of terms together with their prime indices begins:
%e A325179     3: {2}
%e A325179     4: {1,1}
%e A325179     6: {1,2}
%e A325179    15: {2,3}
%e A325179    18: {1,2,2}
%e A325179    25: {3,3}
%e A325179    27: {2,2,2}
%e A325179    30: {1,2,3}
%e A325179    45: {2,2,3}
%e A325179    50: {1,3,3}
%e A325179    75: {2,3,3}
%e A325179   175: {3,3,4}
%e A325179   245: {3,4,4}
%e A325179   250: {1,3,3,3}
%e A325179   343: {4,4,4}
%e A325179   350: {1,3,3,4}
%e A325179   375: {2,3,3,3}
%e A325179   490: {1,3,4,4}
%e A325179   525: {2,3,3,4}
%e A325179   625: {3,3,3,3}
%t A325179 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
%t A325179 codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
%t A325179 Select[Range[1000],codurf[#]-durf[#]==1&]
%Y A325179 Numbers k such that A263297(k) - A257990(k) = 1.
%Y A325179 Positions of 1's in A325178.
%Y A325179 Cf. A056239, A093641, A112798, A325180, A325181, A325192, A325196, A325198.
%K A325179 nonn
%O A325179 1,1
%A A325179 _Gus Wiseman_, Apr 08 2019