This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325180 #6 Apr 10 2019 22:02:51 %S A325180 5,8,10,12,20,21,35,36,42,49,54,60,63,70,81,84,90,98,100,105,126,135, %T A325180 140,147,150,189,196,210,225,275,294,315,385,441,500,539,550,605,700, %U A325180 750,770,825,847,980,1050,1078,1100,1125,1155,1210,1250,1331,1372,1375 %N A325180 Heinz number of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 2. %C A325180 The enumeration of these partitions by sum is given by A325182. %C A325180 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325180 Gus Wiseman, <a href="/A325180/a325180.png">Young diagrams corresponding to the first 96 terms</a>. %e A325180 The sequence of terms together with their prime indices begins: %e A325180 5: {3} %e A325180 8: {1,1,1} %e A325180 10: {1,3} %e A325180 12: {1,1,2} %e A325180 20: {1,1,3} %e A325180 21: {2,4} %e A325180 35: {3,4} %e A325180 36: {1,1,2,2} %e A325180 42: {1,2,4} %e A325180 49: {4,4} %e A325180 54: {1,2,2,2} %e A325180 60: {1,1,2,3} %e A325180 63: {2,2,4} %e A325180 70: {1,3,4} %e A325180 81: {2,2,2,2} %e A325180 84: {1,1,2,4} %e A325180 90: {1,2,2,3} %e A325180 98: {1,4,4} %e A325180 100: {1,1,3,3} %e A325180 105: {2,3,4} %t A325180 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]]; %t A325180 codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]]; %t A325180 Select[Range[1000],codurf[#]-durf[#]==2&] %Y A325180 Numbers k such that A263297(k) - A257990(k) = 2. %Y A325180 Positions of 2's in A325178. %Y A325180 Cf. A006918, A056239, A093641, A112798, A325164, A325170, A325179, A325182, A325192, A325197. %K A325180 nonn %O A325180 1,1 %A A325180 _Gus Wiseman_, Apr 08 2019