A325181 Number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.
0, 0, 2, 1, 0, 2, 3, 2, 1, 0, 2, 3, 4, 3, 2, 1, 0, 2, 3, 4, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6
Offset: 0
Examples
The a(2) = 2 through a(15) = 1 partitions: (2) (21) (32) (33) (322) (332) (433) (443) (444) (4333) (4433) (4443) (11) (221) (222) (331) (3331) (3332) (3333) (4432) (4442) (321) (4331) (4332) (4441) (4431)
Links
- Giovanni Resta, Table of n, a(n) for n = 0..150
Crossrefs
Programs
-
Mathematica
durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]]; codurf[ptn_]:=Max[Length[ptn],Max[ptn]]; Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==1&]],{n,0,30}]
Extensions
More terms from Giovanni Resta, Apr 15 2019
Comments