A325182 Number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 2.
0, 0, 0, 2, 2, 1, 2, 4, 7, 6, 5, 4, 5, 9, 12, 15, 14, 12, 10, 9, 11, 15, 21, 24, 28, 26, 24, 20, 18, 17, 19, 25, 31, 38, 42, 46, 44, 41, 36, 32, 29, 28, 31, 37, 46, 53, 62, 66, 71, 68, 65, 58, 53, 47, 44, 43, 46, 54, 63, 74, 83, 93, 98, 103, 100, 96, 88, 81
Offset: 0
Examples
The a(3) = 2 through a(14) = 12 partitions: 3 31 311 42 43 44 432 442 533 543 544 554 111 211 2211 421 422 441 3322 4322 4422 553 5333 2221 431 3222 4222 4421 5331 5332 5432 3211 2222 3321 4321 33311 33321 5431 5441 3221 4221 4411 43311 33322 5531 3311 4311 33331 33332 4211 43321 43322 44311 43331 53311 44321 44411 53321 54311
References
- Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.
Links
- Wikipedia, Durfee square.
Crossrefs
Programs
-
Mathematica
durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]]; codurf[ptn_]:=Max[Length[ptn],Max[ptn]]; Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==2&]],{n,0,30}]
Comments