This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325183 #6 Feb 16 2025 08:33:58 %S A325183 1,2,3,3,5,6,7,5,10,10,11,10,13,14,15,7,17,15,19,14,21,22,23,14,21,26, %T A325183 21,22,29,30,31,11,33,34,35,21,37,38,39,22,41,42,43,26,42,46,47,22,55, %U A325183 42,51,34,53,35,55,26,57,58,59,42,61,62,66,13,65,66,67 %N A325183 Heinz number of the origin-to-boundary partition of the Young diagram of the integer partition with Heinz number n. %C A325183 The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. %C A325183 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325183 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>. %e A325183 The partition with Heinz number 7865 is (6,5,5,3), with diagram %e A325183 o o o o o o %e A325183 o o o o o %e A325183 o o o o o %e A325183 o o o %e A325183 with origin-to-boundary graph-distances %e A325183 4 4 4 3 2 1 %e A325183 3 3 3 2 1 %e A325183 2 2 2 1 1 %e A325183 1 1 1 %e A325183 giving the origin-to-boundary partition (7,5,4,3) with Heinz number 6545, so a(7865) = 6545. %t A325183 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325183 ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1]; %t A325183 corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0]; %t A325183 Table[Times@@Prime/@If[n==1,{},-Differences[Map[Total,Drop[FixedPointList[corpos,ptnmat[primeptn[n]]],-1],2]]],{n,30}] %Y A325183 The only terms appearing only once are the primorials A002110. %Y A325183 The union consists of all squarefree numbers A005117. %Y A325183 Cf. A000245, A056239, A065770, A112798, A174090, A297113. %Y A325183 Cf. A325166, A325167, A325169, A325184, A325188, A325189, A325195. %K A325183 nonn %O A325183 1,2 %A A325183 _Gus Wiseman_, Apr 08 2019