A325184 Last part of the origin-to-boundary partition of the Young diagram of the integer partition with Heinz number n.
0, 1, 2, 2, 3, 1, 4, 3, 1, 1, 5, 1, 6, 1, 2, 4, 7, 2, 8, 1, 2, 1, 9, 1, 2, 1, 2, 1, 10, 1, 11, 5, 2, 1, 3, 2, 12, 1, 2, 1, 13, 1, 14, 1, 1, 1, 15, 1, 3, 1, 2, 1, 16, 3, 3, 1, 2, 1, 17, 1, 18, 1, 1, 6, 3, 1, 19, 1, 2, 1, 20, 2, 21, 1, 1, 1, 4, 1, 22, 1, 3, 1
Offset: 1
Keywords
Examples
The partition with Heinz number 7865 is (6,5,5,3), with diagram o o o o o o o o o o o o o o o o o o o with origin-to-boundary graph-distances 4 4 4 3 2 1 3 3 3 2 1 2 2 2 1 1 1 1 1 giving the origin-to-boundary partition (7,5,4,3) with last part 3, so a(7865) = 3.
Links
- Eric Weisstein's World of Mathematics, Graph Distance.
Crossrefs
Programs
-
Mathematica
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1]; corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0]; Table[Apply[Plus,If[n==1,{},FixedPointList[corpos,ptnmat[primeptn[n]]][[-3]]],{0,1}],{n,100}]
Comments