This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325185 #7 Feb 16 2025 08:33:58 %S A325185 2,6,9,10,12,14,20,22,24,26,28,30,34,38,40,42,44,45,46,48,50,52,56,58, %T A325185 60,62,63,66,68,70,74,75,76,78,80,82,84,86,88,90,92,94,96,98,99,100, %U A325185 102,104,106,110,112,114,116,117,118,120,122,124,125,126,130,132 %N A325185 Heinz numbers of integer partitions such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square. %C A325185 The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. The sequence gives all Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 1. %C A325185 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325185 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>. %H A325185 Gus Wiseman, <a href="/A325185/a325185.png">Young diagrams for the first 25 terms</a>. %e A325185 The sequence of terms together with their prime indices begins: %e A325185 2: {1} %e A325185 6: {1,2} %e A325185 9: {2,2} %e A325185 10: {1,3} %e A325185 12: {1,1,2} %e A325185 14: {1,4} %e A325185 20: {1,1,3} %e A325185 22: {1,5} %e A325185 24: {1,1,1,2} %e A325185 26: {1,6} %e A325185 28: {1,1,4} %e A325185 30: {1,2,3} %e A325185 34: {1,7} %e A325185 38: {1,8} %e A325185 40: {1,1,1,3} %e A325185 42: {1,2,4} %e A325185 44: {1,1,5} %e A325185 45: {2,2,3} %e A325185 46: {1,9} %e A325185 48: {1,1,1,1,2} %t A325185 hptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325185 otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; %t A325185 Select[Range[2,100],otb[hptn[#]]>otb[Rest[hptn[#]]]&&otb[hptn[#]]>otb[DeleteCases[hptn[#]-1,0]]&] %Y A325185 Cf. A001222, A056239, A061395, A065770, A112798, A188674. %Y A325185 Cf. A325169, A325183, A325184, A325186, A325187, A325196. %K A325185 nonn %O A325185 1,1 %A A325185 _Gus Wiseman_, Apr 08 2019