This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325186 #5 Feb 16 2025 08:33:58 %S A325186 3,4,15,18,21,25,27,33,36,39,51,57,69,72,87,93,105,111,123,129,141, %T A325186 144,147,150,159,165,175,177,183,195,201,213,219,225,231,237,245,249, %U A325186 250,255,267,273,275,285,288,291,300,303,309,321,325,327,339,343,345,357 %N A325186 Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 2. %C A325186 The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. %C A325186 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325186 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>. %H A325186 Gus Wiseman, <a href="/A325186/a325186.png">Young diagrams for the first 25 terms</a>. %e A325186 The sequence of terms together with their prime indices begins: %e A325186 3: {2} %e A325186 4: {1,1} %e A325186 15: {2,3} %e A325186 18: {1,2,2} %e A325186 21: {2,4} %e A325186 25: {3,3} %e A325186 27: {2,2,2} %e A325186 33: {2,5} %e A325186 36: {1,1,2,2} %e A325186 39: {2,6} %e A325186 51: {2,7} %e A325186 57: {2,8} %e A325186 69: {2,9} %e A325186 72: {1,1,1,2,2} %e A325186 87: {2,10} %e A325186 93: {2,11} %e A325186 105: {2,3,4} %e A325186 111: {2,12} %e A325186 123: {2,13} %e A325186 129: {2,14} %t A325186 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325186 ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1]; %t A325186 corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0]; %t A325186 Select[Range[100],Apply[Plus,If[#==1,{},FixedPointList[corpos,ptnmat[primeptn[#]]][[-3]]],{0,1}]==2&] %Y A325186 Cf. A006918, A056239, A065770, A112798. %Y A325186 Cf. A325164, A325169, A325170, A325183, A325184, A325185, A325190, A325197. %K A325186 nonn %O A325186 1,1 %A A325186 _Gus Wiseman_, Apr 08 2019