cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325186 Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 2.

This page as a plain text file.
%I A325186 #5 Feb 16 2025 08:33:58
%S A325186 3,4,15,18,21,25,27,33,36,39,51,57,69,72,87,93,105,111,123,129,141,
%T A325186 144,147,150,159,165,175,177,183,195,201,213,219,225,231,237,245,249,
%U A325186 250,255,267,273,275,285,288,291,300,303,309,321,325,327,339,343,345,357
%N A325186 Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 2.
%C A325186 The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary.
%C A325186 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325186 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>.
%H A325186 Gus Wiseman, <a href="/A325186/a325186.png">Young diagrams for the first 25 terms</a>.
%e A325186 The sequence of terms together with their prime indices begins:
%e A325186     3: {2}
%e A325186     4: {1,1}
%e A325186    15: {2,3}
%e A325186    18: {1,2,2}
%e A325186    21: {2,4}
%e A325186    25: {3,3}
%e A325186    27: {2,2,2}
%e A325186    33: {2,5}
%e A325186    36: {1,1,2,2}
%e A325186    39: {2,6}
%e A325186    51: {2,7}
%e A325186    57: {2,8}
%e A325186    69: {2,9}
%e A325186    72: {1,1,1,2,2}
%e A325186    87: {2,10}
%e A325186    93: {2,11}
%e A325186   105: {2,3,4}
%e A325186   111: {2,12}
%e A325186   123: {2,13}
%e A325186   129: {2,14}
%t A325186 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325186 ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1];
%t A325186 corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0];
%t A325186 Select[Range[100],Apply[Plus,If[#==1,{},FixedPointList[corpos,ptnmat[primeptn[#]]][[-3]]],{0,1}]==2&]
%Y A325186 Cf. A006918, A056239, A065770, A112798.
%Y A325186 Cf. A325164, A325169, A325170, A325183, A325184, A325185, A325190, A325197.
%K A325186 nonn
%O A325186 1,1
%A A325186 _Gus Wiseman_, Apr 08 2019