A325187 Number of integer partitions of n such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.
1, 0, 1, 3, 3, 5, 9, 14, 20, 26, 38, 53, 75, 101, 132, 175, 229, 301, 394, 509, 650, 826, 1043, 1315, 1656, 2074, 2590, 3218, 3975, 4896, 6008, 7361, 8989, 10960, 13323, 16159, 19531, 23553, 28323, 34002, 40723, 48694, 58115, 69249, 82350, 97766, 115832
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 14 partitions: (1) (21) (22) (41) (51) (61) (71) (31) (311) (321) (322) (332) (211) (2111) (411) (331) (422) (3111) (421) (431) (21111) (511) (521) (3211) (611) (4111) (3221) (31111) (3311) (211111) (4211) (5111) (32111) (41111) (311111) (2111111)
Links
- Eric Weisstein's World of Mathematics, Graph Distance.
Crossrefs
Programs
-
Mathematica
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Table[Length[Select[IntegerPartitions[n],otb[#]>otb[Rest[#]]&&otb[#]>otb[DeleteCases[#-1,0]]&]],{n,30}]
Comments