cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325188 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with origin-to-boundary graph-distance equal to k.

This page as a plain text file.
%I A325188 #27 Aug 04 2025 11:20:45
%S A325188 1,0,1,0,2,0,0,2,1,0,0,2,3,0,0,0,2,5,0,0,0,0,2,8,1,0,0,0,0,2,9,4,0,0,
%T A325188 0,0,0,2,12,8,0,0,0,0,0,0,2,13,15,0,0,0,0,0,0,0,2,16,23,1,0,0,0,0,0,0,
%U A325188 0,2,17,32,5,0,0,0,0,0,0,0
%N A325188 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with origin-to-boundary graph-distance equal to k.
%C A325188 The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps right or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the maximum triangular partition contained inside the diagram.
%H A325188 Andrew Howroyd, <a href="/A325188/b325188.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%H A325188 N. Guru Sharan, <a href="https://arxiv.org/abs/2507.20260">Rook decomposition of the Partition function</a>, arXiv:2507.20260 [math.CO], 2025. See p. 4.
%H A325188 N. Guru Sharan and Armin Straub, <a href="https://arxiv.org/abs/2507.19047">Partitions with Durfee triangles of fixed size</a>, arXiv:2507.19047 [math.CO], 2025. See p. 10.
%H A325188 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>.
%F A325188 Sum_{k=1..n} k*T(n,k) = A368986(n).
%e A325188 Triangle begins:
%e A325188   1
%e A325188   0  1
%e A325188   0  2  0
%e A325188   0  2  1  0
%e A325188   0  2  3  0  0
%e A325188   0  2  5  0  0  0
%e A325188   0  2  8  1  0  0  0
%e A325188   0  2  9  4  0  0  0  0
%e A325188   0  2 12  8  0  0  0  0  0
%e A325188   0  2 13 15  0  0  0  0  0  0
%e A325188   0  2 16 23  1  0  0  0  0  0  0
%e A325188   0  2 17 32  5  0  0  0  0  0  0  0
%e A325188   0  2 20 43 12  0  0  0  0  0  0  0  0
%e A325188   0  2 21 54 24  0  0  0  0  0  0  0  0  0
%e A325188   0  2 24 67 42  0  0  0  0  0  0  0  0  0  0
%e A325188   0  2 25 82 66  1  0  0  0  0  0  0  0  0  0  0
%t A325188 otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
%t A325188 Table[Length[Select[IntegerPartitions[n],otb[#]==k&]],{n,0,15},{k,0,n}]
%o A325188 (PARI) row(n)={my(r=vector(n+1)); forpart(p=n, my(w=#p); for(i=1, #p, w=min(w,#p-i+p[i])); r[w+1]++); r} \\ _Andrew Howroyd_, Jan 12 2024
%Y A325188 Row sums are A000041.
%Y A325188 Columns k=1-4 give: A130130, A325168, A382682, A384562.
%Y A325188 Cf. A000245, A065770, A096771, A115994, A325169, A325183, A325187, A325189, A325191, A325195, A325200, A368986.
%K A325188 nonn,tabl
%O A325188 0,5
%A A325188 _Gus Wiseman_, Apr 11 2019