This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325189 #29 Feb 16 2025 08:33:58 %S A325189 1,0,1,0,0,2,0,0,1,2,0,0,0,3,2,0,0,0,3,2,2,0,0,0,1,6,2,2,0,0,0,0,7,4, %T A325189 2,2,0,0,0,0,6,8,4,2,2,0,0,0,0,4,12,6,4,2,2,0,0,0,0,1,15,12,6,4,2,2,0, %U A325189 0,0,0,0,17,15,10,6,4,2,2 %N A325189 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k. %C A325189 The maximum origin-to-boundary graph-distance of an integer partition is one plus the maximum number of unit steps East or South in the Young diagram that can be followed, starting from the upper-left square, to reach a boundary square in the lower-right quadrant. It is also the side-length of the minimum triangular partition containing the diagram. %H A325189 Andrew Howroyd, <a href="/A325189/b325189.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %H A325189 Bridget Eileen Tenner, <a href="https://doi.org/10.1007/s10801-017-0752-8">Reduced word manipulation: patterns and enumeration</a>, J. Algebr. Comb. 46, No. 1, 189-217 (2017), table 1. %H A325189 Tewodros Amdeberhan, George E. Andrews, and Cristina Ballantine, <a href="https://arxiv.org/abs/2205.07322">Hook length and symplectic content in partitions</a>, arXiv:2205.07322 [math.CO], 2022. %H A325189 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a> %F A325189 Sum_{k=1..n} k*T(n,k) = A366157(n). - _Andrew Howroyd_, Jan 12 2024 %e A325189 Triangle begins: %e A325189 1 %e A325189 0 1 %e A325189 0 0 2 %e A325189 0 0 1 2 %e A325189 0 0 0 3 2 %e A325189 0 0 0 3 2 2 %e A325189 0 0 0 1 6 2 2 %e A325189 0 0 0 0 7 4 2 2 %e A325189 0 0 0 0 6 8 4 2 2 %e A325189 0 0 0 0 4 12 6 4 2 2 %e A325189 0 0 0 0 1 15 12 6 4 2 2 %e A325189 0 0 0 0 0 17 15 10 6 4 2 2 %e A325189 0 0 0 0 0 14 23 16 10 6 4 2 2 %e A325189 0 0 0 0 0 10 30 23 14 10 6 4 2 2 %e A325189 0 0 0 0 0 5 39 29 24 14 10 6 4 2 2 %e A325189 0 0 0 0 0 1 42 42 31 22 14 10 6 4 2 2 %e A325189 Row 9 counts the following partitions: %e A325189 (432) (54) (63) (72) (81) (9) %e A325189 (3321) (333) (621) (711) (21111111) (111111111) %e A325189 (4221) (441) (6111) (2211111) %e A325189 (4311) (522) (222111) (3111111) %e A325189 (531) (321111) %e A325189 (3222) (411111) %e A325189 (5211) %e A325189 (22221) %e A325189 (32211) %e A325189 (33111) %e A325189 (42111) %e A325189 (51111) %t A325189 otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; %t A325189 Table[Length[Select[IntegerPartitions[n],otbmax[#]==k&]],{n,0,15},{k,0,n}] %o A325189 (PARI) row(n)={my(r=vector(n+1)); forpart(p=n, my(w=0); for(i=1, #p, w=max(w,#p-i+p[i])); r[w+1]++); r} \\ _Andrew Howroyd_, Jan 12 2024 %Y A325189 Row sums are A000041. Column sums are A071724. %Y A325189 Cf. A065770, A096771, A115720, A115994, A139582, A325169, A325183, A325188, A325195, A325200, A366157. %K A325189 nonn,tabl %O A325189 0,6 %A A325189 _Gus Wiseman_, Apr 11 2019