cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325189 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k.

This page as a plain text file.
%I A325189 #29 Feb 16 2025 08:33:58
%S A325189 1,0,1,0,0,2,0,0,1,2,0,0,0,3,2,0,0,0,3,2,2,0,0,0,1,6,2,2,0,0,0,0,7,4,
%T A325189 2,2,0,0,0,0,6,8,4,2,2,0,0,0,0,4,12,6,4,2,2,0,0,0,0,1,15,12,6,4,2,2,0,
%U A325189 0,0,0,0,17,15,10,6,4,2,2
%N A325189 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k.
%C A325189 The maximum origin-to-boundary graph-distance of an integer partition is one plus the maximum number of unit steps East or South in the Young diagram that can be followed, starting from the upper-left square, to reach a boundary square in the lower-right quadrant. It is also the side-length of the minimum triangular partition containing the diagram.
%H A325189 Andrew Howroyd, <a href="/A325189/b325189.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%H A325189 Bridget Eileen Tenner, <a href="https://doi.org/10.1007/s10801-017-0752-8">Reduced word manipulation: patterns and enumeration</a>,  J. Algebr. Comb. 46, No. 1, 189-217 (2017), table 1.
%H A325189 Tewodros Amdeberhan, George E. Andrews, and Cristina Ballantine, <a href="https://arxiv.org/abs/2205.07322">Hook length and symplectic content in partitions</a>, arXiv:2205.07322 [math.CO], 2022.
%H A325189 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>
%F A325189 Sum_{k=1..n} k*T(n,k) = A366157(n). - _Andrew Howroyd_, Jan 12 2024
%e A325189 Triangle begins:
%e A325189   1
%e A325189   0  1
%e A325189   0  0  2
%e A325189   0  0  1  2
%e A325189   0  0  0  3  2
%e A325189   0  0  0  3  2  2
%e A325189   0  0  0  1  6  2  2
%e A325189   0  0  0  0  7  4  2  2
%e A325189   0  0  0  0  6  8  4  2  2
%e A325189   0  0  0  0  4 12  6  4  2  2
%e A325189   0  0  0  0  1 15 12  6  4  2  2
%e A325189   0  0  0  0  0 17 15 10  6  4  2  2
%e A325189   0  0  0  0  0 14 23 16 10  6  4  2  2
%e A325189   0  0  0  0  0 10 30 23 14 10  6  4  2  2
%e A325189   0  0  0  0  0  5 39 29 24 14 10  6  4  2  2
%e A325189   0  0  0  0  0  1 42 42 31 22 14 10  6  4  2  2
%e A325189 Row 9 counts the following partitions:
%e A325189   (432)   (54)     (63)      (72)       (81)        (9)
%e A325189   (3321)  (333)    (621)     (711)      (21111111)  (111111111)
%e A325189   (4221)  (441)    (6111)    (2211111)
%e A325189   (4311)  (522)    (222111)  (3111111)
%e A325189           (531)    (321111)
%e A325189           (3222)   (411111)
%e A325189           (5211)
%e A325189           (22221)
%e A325189           (32211)
%e A325189           (33111)
%e A325189           (42111)
%e A325189           (51111)
%t A325189 otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
%t A325189 Table[Length[Select[IntegerPartitions[n],otbmax[#]==k&]],{n,0,15},{k,0,n}]
%o A325189 (PARI) row(n)={my(r=vector(n+1)); forpart(p=n, my(w=0); for(i=1, #p, w=max(w,#p-i+p[i])); r[w+1]++); r} \\ _Andrew Howroyd_, Jan 12 2024
%Y A325189 Row sums are A000041. Column sums are A071724.
%Y A325189 Cf. A065770, A096771, A115720, A115994, A139582, A325169, A325183, A325188, A325195, A325200, A366157.
%K A325189 nonn,tabl
%O A325189 0,6
%A A325189 _Gus Wiseman_, Apr 11 2019