This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325190 #6 Feb 16 2025 08:33:58 %S A325190 0,0,2,0,0,2,4,2,2,4,8,10,12,10,14,20,28,36,44,46,56,66,86,108,136, %T A325190 160,190,214,252,298,364,434,524,620,728,834,966,1112,1306,1522,1788, %U A325190 2088,2448,2822,3256,3720,4264,4876,5610,6434,7420 %N A325190 Number of integer partitions of n whose Young diagram has last part of its origin-to-boundary partition equal to 2. %C A325190 The Heinz numbers of these partitions are given by A325186. %C A325190 The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. For example, the partition (6,5,5,3) has diagram %C A325190 o o o o o o %C A325190 o o o o o %C A325190 o o o o o %C A325190 o o o %C A325190 with origin-to-boundary graph-distances %C A325190 4 4 4 3 2 1 %C A325190 3 3 3 2 1 %C A325190 2 2 2 1 1 %C A325190 1 1 1 %C A325190 giving the origin-to-boundary partition (7,5,4,3). %H A325190 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>. %e A325190 The a(2) = 1 through a(11) = 10 partitions: %e A325190 (2) (32) (33) (52) (62) (72) (82) (92) %e A325190 (11) (221) (42) (22111) (221111) (432) (433) (443) %e A325190 (222) (3321) (442) (533) %e A325190 (2211) (2211111) (532) (542) %e A325190 (3322) (632) %e A325190 (3331) (3332) %e A325190 (33211) (33221) %e A325190 (22111111) (33311) %e A325190 (332111) %e A325190 (221111111) %t A325190 ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1]; %t A325190 corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0]; %t A325190 Table[Length[Select[IntegerPartitions[n],Apply[Plus,If[#=={},{},FixedPointList[corpos,ptnmat[#]][[-3]]],{0,1}]==2&]],{n,30}] %Y A325190 Cf. A188674, A325165, A325169, A325183, A325184, A325186, A325187, A325190, A325199. %K A325190 nonn %O A325190 0,3 %A A325190 _Gus Wiseman_, Apr 11 2019