A325195 Difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram of the integer partition with Heinz number n.
0, 0, 1, 1, 2, 0, 3, 2, 1, 1, 4, 1, 5, 2, 1, 3, 6, 1, 7, 1, 2, 3, 8, 2, 2, 4, 2, 2, 9, 0, 10, 4, 3, 5, 2, 2, 11, 6, 4, 2, 12, 1, 13, 3, 1, 7, 14, 3, 3, 1, 5, 4, 15, 2, 3, 2, 6, 8, 16, 1, 17, 9, 1, 5, 4, 2, 18, 5, 7, 1, 19, 3, 20, 10, 1, 6, 3, 3, 21, 3, 3, 11
Offset: 1
Keywords
Examples
The partition (3,3) has Heinz number 25 and diagram o o o o o o containing maximal triangular partition o o o and contained in minimal triangular partition o o o o o o o o o o so a(25) = 4 - 2 = 2.
Links
Crossrefs
Programs
-
Mathematica
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Table[otbmax[primeptn[n]]-otb[primeptn[n]],{n,100}]
Comments